Merge branch 'master' into master

pull/323/head
evelynmitchell 1 year ago committed by GitHub
commit f59875d491
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

1
.gitignore vendored

@ -18,6 +18,7 @@ venv
swarms/agents/.DS_Store swarms/agents/.DS_Store
_build _build
conversation.txt
stderr_log.txt stderr_log.txt
.vscode .vscode

@ -27,7 +27,7 @@ Run example in Collab: <a target="_blank" href="https://colab.research.google.co
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a> </a>
### `Agent` Example ### `Agent`
- Reliable Structure that provides LLMS autonomy - Reliable Structure that provides LLMS autonomy
- Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more - Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more
- Enterprise Grade + Production Grade: `Agent` is designed and optimized for automating real-world tasks at scale! - Enterprise Grade + Production Grade: `Agent` is designed and optimized for automating real-world tasks at scale!
@ -127,15 +127,69 @@ for task in workflow.tasks:
``` ```
## `Multi Modal Autonomous Agents`
- Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
### `ModelParallelizer`
- Concurrent Execution of Multiple Models: The ModelParallelizer allows you to run multiple models concurrently, comparing their outputs. This feature enables you to easily compare the performance and results of different models, helping you make informed decisions about which model to use for your specific task.
- Plug-and-Play Integration: The structure provides a seamless integration with various models, including OpenAIChat, Anthropic, Mixtral, and Gemini. You can easily plug in any of these models and start using them without the need for extensive modifications or setup.
```python ```python
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os import os
from dotenv import load_dotenv from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
from swarms.swarms import ModelParallelizer
load_dotenv()
# API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
# Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness."
# Run the task
out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")
```
### Simple Conversational Agent
- Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our models
- Reliable conversational structure to hold messages together with dynamic handling for long context conversations and interactions with auto chunking
- Reliable, this simple system will always provide responses you want.
```python
import os
from dotenv import load_dotenv
from swarms import (
OpenAIChat,
Conversation,
)
conv = Conversation(
time_enabled=True,
)
# Load the environment variables # Load the environment variables
load_dotenv() load_dotenv()
@ -144,65 +198,161 @@ load_dotenv()
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model # Initialize the language model
llm = GPT4VisionAPI( llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
openai_api_key=api_key,
max_tokens=500, # Run the language model in a loop
) def interactive_conversation(llm):
conv = Conversation()
while True:
user_input = input("User: ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task)
conv.add("assistant", out)
print(
f"Assistant: {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
# Replace with your LLM instance
interactive_conversation(llm)
# Initialize the task ```
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly" ### `SwarmNetwork`
" process. IF there is anything unsafe in the image, explain why it is" - Efficient Task Management: SwarmNetwork's intelligent agent pool and task queue management system ensures tasks are distributed evenly across agents. This leads to efficient use of resources and faster task completion.
" unsafe and how it could be improved."
- Scalability: SwarmNetwork can dynamically scale the number of agents based on the number of pending tasks. This means it can handle an increase in workload by adding more agents, and conserve resources when the workload is low by reducing the number of agents.
- Versatile Deployment Options: With SwarmNetwork, each agent can be run on its own thread, process, container, machine, or even cluster. This provides a high degree of flexibility and allows for deployment that best suits the user's needs and infrastructure.
```python
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
) )
img = "assembly_line.jpg"
## Initialize the workflow ## Initialize the workflow
agent = Agent( agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
llm=llm, agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
max_loops="auto", agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
autosave=True,
dashboard=True,
multi_modal=True # Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
) )
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
# Run the workflow on a task # Run the workflow on a task
agent.run(task=task, img=img) out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
# Run all the agents in the swarm network on a task
out = swarmnet.run_many_agents(
"Generate a 10,000 word blog on health and wellness."
)
print(out)
``` ```
### `OmniModalAgent` ### `Task`
- An agent that can understand any modality and conditionally generate any modality. Task Execution: The Task structure allows for the execution of tasks by an assigned agent. The run method is used to execute the task. It's like a Zapier for LLMs
- Task Description: Each Task can have a description, providing a human-readable explanation of what the task is intended to do.
- Task Scheduling: Tasks can be scheduled for execution at a specific time using the schedule_time attribute.
- Task Triggers: The set_trigger method allows for the setting of a trigger function that is executed before the task.
- Task Actions: The set_action method allows for the setting of an action function that is executed after the task.
- Task Conditions: The set_condition method allows for the setting of a condition function. The task will only be executed if this function returns True.
- Task Dependencies: The add_dependency method allows for the addition of dependencies to the task. The task will only be executed if all its dependencies have been completed.
- Task Priority: The set_priority method allows for the setting of the task's priority. Tasks with higher priority will be executed before tasks with lower priority.
- Task History: The history attribute is a list that keeps track of all the results of the task execution. This can be useful for debugging and for tasks that need to be executed multiple times.
```python ```python
from swarms.agents.omni_modal_agent import OmniModalAgent, OpenAIChat from swarms.structs import Task, Agent
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from dotenv import load_dotenv from dotenv import load_dotenv
import os import os
# Load the environment variables # Load the environment variables
load_dotenv() load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model # Define a function to be used as the action
llm = OpenAIChat( def my_action():
temperature=0.5, print("Action executed")
model_name="gpt-4",
openai_api_key=api_key,
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
) )
# Create a task
task = Task(description="What's the weather in miami", agent=agent)
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")
agent = OmniModalAgent(llm)
agent.run("Generate a video of a swarm of fish and then make an image out of the video")
``` ```
--- ---
## Real-World Deployment
### Multi-Agent Swarm for Logistics ### Multi-Agent Swarm for Logistics
- Swarms is a framework designed for real-world deployment here is a demo presenting a fully ready to use Swarm for a vast array of logistics tasks. - Swarms is a framework designed for real-world deployment here is a demo presenting a fully ready to use Swarm for a vast array of logistics tasks.
- Swarms is designed to be modular and reliable for real-world deployments. - Swarms is designed to be modular and reliable for real-world deployments.
@ -312,8 +462,60 @@ efficiency_analysis = efficiency_agent.run(
factory_image, factory_image,
) )
``` ```
---
## `Multi Modal Autonomous Agents`
- Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
```python
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = GPT4VisionAPI(
openai_api_key=api_key,
max_tokens=500,
)
# Initialize the task
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly"
" process. IF there is anything unsafe in the image, explain why it is"
" unsafe and how it could be improved."
)
img = "assembly_line.jpg"
## Initialize the workflow
agent = Agent(
llm=llm,
max_loops="auto",
autosave=True,
dashboard=True,
multi_modal=True
)
# Run the workflow on a task
agent.run(task=task, img=img)
```
---
## Multi-Modal Model APIs
### Gemini ### `Gemini`
- Deploy Gemini from Google with utmost reliability with our visual chain of thought prompt that enables more reliable responses - Deploy Gemini from Google with utmost reliability with our visual chain of thought prompt that enables more reliable responses
```python ```python
import os import os
@ -386,7 +588,7 @@ generated_text = inference(prompt_text)
print(generated_text) print(generated_text)
``` ```
### Mixtral ### `Mixtral`
- Utilize Mixtral in a very simple API, - Utilize Mixtral in a very simple API,
- Utilize 4bit quantization for a increased speed and less memory usage - Utilize 4bit quantization for a increased speed and less memory usage
- Use Flash Attention 2.0 for increased speed and less memory usage - Use Flash Attention 2.0 for increased speed and less memory usage
@ -403,6 +605,63 @@ generated_text = mixtral.run("Generate a creative story.")
print(generated_text) print(generated_text)
``` ```
### `Dalle3`
```python
from swarms import Dalle3
# Create an instance of the Dalle3 class with high quality
dalle3 = Dalle3(quality="high")
# Define a text prompt
task = "A high-quality image of a sunset"
# Generate a high-quality image from the text prompt
image_url = dalle3(task)
# Print the generated image URL
print(image_url)
```
### `GPT4Vision`
```python
from swarms.models import GPT4VisionAPI
# Initialize with default API key and custom max_tokens
api = GPT4VisionAPI(max_tokens=1000)
# Define the task and image URL
task = "Describe the scene in the image."
img = "https://i.imgur.com/4P4ZRxU.jpeg"
# Run the GPT-4 Vision model
response = api.run(task, img)
# Print the model's response
print(response)
```
### Text to Video with `ZeroscopeTTV`
```python
# Import the model
from swarms import ZeroscopeTTV
# Initialize the model
zeroscope = ZeroscopeTTV()
# Specify the task
task = "A person is walking on the street."
# Generate the video!
video_path = zeroscope(task)
print(video_path)
```
--- ---
# Features 🤖 # Features 🤖
@ -477,7 +736,7 @@ Swarms framework is not just a tool but a robust, scalable, and secure partner i
## Documentation ## Documentation
- For documentation, go here, [swarms.apac.ai](https://swarms.apac.ai) - Out documentation is located here at: [swarms.apac.ai](https://swarms.apac.ai)
## 🫶 Contributions: ## 🫶 Contributions:
@ -498,7 +757,7 @@ To see how to contribute, visit [Contribution guidelines](https://github.com/kye
## Discovery Call ## Discovery Call
Book a discovery call with the Swarms team to learn how to optimize and scale your swarm! [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11) Book a discovery call to learn how Swarms can lower your operating costs by 40% with swarms of autonomous agents in lightspeed. [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11)
# License # License
Apache License Apache License

@ -0,0 +1,105 @@
# Module Name: ZeroscopeTTV
## Introduction
The ZeroscopeTTV module is a versatile zero-shot video generation model designed to create videos based on textual descriptions. This comprehensive documentation will provide you with an in-depth understanding of the ZeroscopeTTV module, its architecture, purpose, arguments, and detailed usage examples.
## Purpose
The ZeroscopeTTV module serves as a powerful tool for generating videos from text descriptions. Whether you need to create video content for various applications, visualize textual data, or explore the capabilities of ZeroscopeTTV, this module offers a flexible and efficient solution. With its easy-to-use interface, you can quickly generate videos based on your textual input.
## Architecture
The ZeroscopeTTV module is built on top of the Diffusers library, leveraging the power of diffusion models for video generation. It allows you to specify various parameters such as model name, data type, chunk size, dimensions, and more to customize the video generation process. The model performs multiple inference steps and utilizes a diffusion pipeline to generate high-quality videos.
## Class Definition
### `ZeroscopeTTV(model_name: str = "cerspense/zeroscope_v2_576w", torch_dtype=torch.float16, chunk_size: int = 1, dim: int = 1, num_inference_steps: int = 40, height: int = 320, width: int = 576, num_frames: int = 36)`
#### Parameters
- `model_name` (str, optional): The name of the pre-trained model to use. Default is "cerspense/zeroscope_v2_576w".
- `torch_dtype` (torch.dtype, optional): The torch data type to use for computations. Default is torch.float16.
- `chunk_size` (int, optional): The size of chunks for forward chunking. Default is 1.
- `dim` (int, optional): The dimension along which the input is split for forward chunking. Default is 1.
- `num_inference_steps` (int, optional): The number of inference steps to perform. Default is 40.
- `height` (int, optional): The height of the video frames. Default is 320.
- `width` (int, optional): The width of the video frames. Default is 576.
- `num_frames` (int, optional): The number of frames in the video. Default is 36.
## Functionality and Usage
The ZeroscopeTTV module offers a straightforward interface for video generation. It accepts a textual task or description as input and returns the path to the generated video.
### `run(task: str = None, *args, **kwargs) -> str`
#### Parameters
- `task` (str, optional): The input task or description for video generation.
#### Returns
- `str`: The path to the generated video.
## Usage Examples
### Example 1: Basic Usage
```python
from swarms.models import ZeroscopeTTV
# Initialize the ZeroscopeTTV model
zeroscope = ZeroscopeTTV()
# Generate a video based on a textual description
task = "A bird flying in the sky."
video_path = zeroscope.run(task)
print(f"Generated video path: {video_path}")
```
### Example 2: Custom Model and Parameters
You can specify a custom pre-trained model and adjust various parameters for video generation.
```python
custom_model_name = "your_custom_model_path"
custom_dtype = torch.float32
custom_chunk_size = 2
custom_dim = 2
custom_num_inference_steps = 50
custom_height = 480
custom_width = 720
custom_num_frames = 48
custom_zeroscope = ZeroscopeTTV(
model_name=custom_model_name,
torch_dtype=custom_dtype,
chunk_size=custom_chunk_size,
dim=custom_dim,
num_inference_steps=custom_num_inference_steps,
height=custom_height,
width=custom_width,
num_frames=custom_num_frames,
)
task = "A car driving on the road."
video_path = custom_zeroscope.run(task)
print(f"Generated video path: {video_path}")
```
### Example 3: Exporting Video Frames
You can also export individual video frames if needed.
```python
from swarms.models import export_to_video
# Generate video frames
video_frames = zeroscope.run("A boat sailing on the water.")
# Export video frames to a video file
video_path = export_to_video(video_frames)
print(f"Generated video path: {video_path}")
```
## Additional Information and Tips
- Ensure that the input textual task or description is clear and descriptive to achieve the desired video output.
- Experiment with different parameter settings to control video resolution, frame count, and inference steps.
- Use the `export_to_video` function to export individual video frames as needed.
- Monitor the progress and output paths to access the generated videos.
## Conclusion
The ZeroscopeTTV module is a powerful solution for zero-shot video generation based on textual descriptions. Whether you are creating videos for storytelling, data visualization, or other applications, ZeroscopeTTV offers a versatile and efficient way to bring your text to life. With a flexible interface and customizable parameters, it empowers you to generate high-quality videos with ease.
If you encounter any issues or have questions about using ZeroscopeTTV, please refer to the Diffusers library documentation or reach out to their support team for further assistance. Enjoy creating videos with ZeroscopeTTV!

@ -1,4 +1,4 @@
# `GodMode` Documentation # `ModelParallelizer` Documentation
## Table of Contents ## Table of Contents
1. [Understanding the Purpose](#understanding-the-purpose) 1. [Understanding the Purpose](#understanding-the-purpose)
@ -11,19 +11,19 @@
## 1. Understanding the Purpose <a name="understanding-the-purpose"></a> ## 1. Understanding the Purpose <a name="understanding-the-purpose"></a>
To create comprehensive documentation for the `GodMode` class, let's begin by understanding its purpose and functionality. To create comprehensive documentation for the `ModelParallelizer` class, let's begin by understanding its purpose and functionality.
### Purpose and Functionality ### Purpose and Functionality
`GodMode` is a class designed to facilitate the orchestration of multiple Language Model Models (LLMs) to perform various tasks simultaneously. It serves as a powerful tool for managing, distributing, and collecting responses from these models. `ModelParallelizer` is a class designed to facilitate the orchestration of multiple Language Model Models (LLMs) to perform various tasks simultaneously. It serves as a powerful tool for managing, distributing, and collecting responses from these models.
Key features and functionality include: Key features and functionality include:
- **Parallel Task Execution**: `GodMode` can distribute tasks to multiple LLMs and execute them in parallel, improving efficiency and reducing response time. - **Parallel Task Execution**: `ModelParallelizer` can distribute tasks to multiple LLMs and execute them in parallel, improving efficiency and reducing response time.
- **Structured Response Presentation**: The class presents the responses from LLMs in a structured tabular format, making it easy for users to compare and analyze the results. - **Structured Response Presentation**: The class presents the responses from LLMs in a structured tabular format, making it easy for users to compare and analyze the results.
- **Task History Tracking**: `GodMode` keeps a record of tasks that have been submitted, allowing users to review previous tasks and responses. - **Task History Tracking**: `ModelParallelizer` keeps a record of tasks that have been submitted, allowing users to review previous tasks and responses.
- **Asynchronous Execution**: The class provides options for asynchronous task execution, which can be particularly useful for handling a large number of tasks. - **Asynchronous Execution**: The class provides options for asynchronous task execution, which can be particularly useful for handling a large number of tasks.
@ -33,29 +33,29 @@ Now that we have an understanding of its purpose, let's proceed to provide a det
### Overview ### Overview
The `GodMode` class is a crucial component for managing and utilizing multiple LLMs in various natural language processing (NLP) tasks. Its architecture and functionality are designed to address the need for parallel processing and efficient response handling. The `ModelParallelizer` class is a crucial component for managing and utilizing multiple LLMs in various natural language processing (NLP) tasks. Its architecture and functionality are designed to address the need for parallel processing and efficient response handling.
### Importance and Relevance ### Importance and Relevance
In the rapidly evolving field of NLP, it has become common to use multiple language models to achieve better results in tasks such as translation, summarization, and question answering. `GodMode` streamlines this process by allowing users to harness the capabilities of several LLMs simultaneously. In the rapidly evolving field of NLP, it has become common to use multiple language models to achieve better results in tasks such as translation, summarization, and question answering. `ModelParallelizer` streamlines this process by allowing users to harness the capabilities of several LLMs simultaneously.
Key points: Key points:
- **Parallel Processing**: `GodMode` leverages multithreading to execute tasks concurrently, significantly reducing the time required for processing. - **Parallel Processing**: `ModelParallelizer` leverages multithreading to execute tasks concurrently, significantly reducing the time required for processing.
- **Response Visualization**: The class presents responses in a structured tabular format, enabling users to visualize and analyze the outputs from different LLMs. - **Response Visualization**: The class presents responses in a structured tabular format, enabling users to visualize and analyze the outputs from different LLMs.
- **Task Tracking**: Developers can track the history of tasks submitted to `GodMode`, making it easier to manage and monitor ongoing work. - **Task Tracking**: Developers can track the history of tasks submitted to `ModelParallelizer`, making it easier to manage and monitor ongoing work.
### Architecture and How It Works ### Architecture and How It Works
The architecture and working of `GodMode` can be summarized in four steps: The architecture and working of `ModelParallelizer` can be summarized in four steps:
1. **Task Reception**: `GodMode` receives a task from the user. 1. **Task Reception**: `ModelParallelizer` receives a task from the user.
2. **Task Distribution**: The class distributes the task to all registered LLMs. 2. **Task Distribution**: The class distributes the task to all registered LLMs.
3. **Response Collection**: `GodMode` collects the responses generated by the LLMs. 3. **Response Collection**: `ModelParallelizer` collects the responses generated by the LLMs.
4. **Response Presentation**: Finally, the class presents the responses from all LLMs in a structured tabular format, making it easy for users to compare and analyze the results. 4. **Response Presentation**: Finally, the class presents the responses from all LLMs in a structured tabular format, making it easy for users to compare and analyze the results.
@ -65,15 +65,15 @@ Now that we have an overview, let's proceed with a detailed class definition.
### Class Attributes ### Class Attributes
- `llms`: A list of LLMs (Language Model Models) that `GodMode` manages. - `llms`: A list of LLMs (Language Model Models) that `ModelParallelizer` manages.
- `last_responses`: Stores the responses from the most recent task. - `last_responses`: Stores the responses from the most recent task.
- `task_history`: Keeps a record of all tasks submitted to `GodMode`. - `task_history`: Keeps a record of all tasks submitted to `ModelParallelizer`.
### Methods ### Methods
The `GodMode` class defines various methods to facilitate task distribution, execution, and response presentation. Let's examine some of the key methods: The `ModelParallelizer` class defines various methods to facilitate task distribution, execution, and response presentation. Let's examine some of the key methods:
- `run(task)`: Distributes a task to all LLMs, collects responses, and returns them. - `run(task)`: Distributes a task to all LLMs, collects responses, and returns them.
@ -87,23 +87,23 @@ The `GodMode` class defines various methods to facilitate task distribution, exe
- `save_responses_to_file(filename)`: Saves responses to a file for future reference. - `save_responses_to_file(filename)`: Saves responses to a file for future reference.
- `load_llms_from_file(filename)`: Loads LLMs from a file, making it easy to configure `GodMode` for different tasks. - `load_llms_from_file(filename)`: Loads LLMs from a file, making it easy to configure `ModelParallelizer` for different tasks.
- `get_task_history()`: Retrieves the task history, allowing users to review previous tasks. - `get_task_history()`: Retrieves the task history, allowing users to review previous tasks.
- `summary()`: Provides a summary of task history and the last responses, aiding in post-processing and analysis. - `summary()`: Provides a summary of task history and the last responses, aiding in post-processing and analysis.
Now that we have covered the class definition, let's delve into the functionality and usage of `GodMode`. Now that we have covered the class definition, let's delve into the functionality and usage of `ModelParallelizer`.
## 4. Functionality and Usage <a name="functionality-and-usage"></a> ## 4. Functionality and Usage <a name="functionality-and-usage"></a>
### Distributing a Task and Collecting Responses ### Distributing a Task and Collecting Responses
One of the primary use cases of `GodMode` is to distribute a task to all registered LLMs and collect their responses. This can be achieved using the `run(task)` method. Below is an example: One of the primary use cases of `ModelParallelizer` is to distribute a task to all registered LLMs and collect their responses. This can be achieved using the `run(task)` method. Below is an example:
```python ```python
god_mode = GodMode(llms) parallelizer = ModelParallelizer(llms)
responses = god_mode.run("Translate the following English text to French: 'Hello, how are you?'") responses = parallelizer.run("Translate the following English text to French: 'Hello, how are you?'")
``` ```
### Printing Responses ### Printing Responses
@ -111,7 +111,7 @@ responses = god_mode.run("Translate the following English text to French: 'Hello
To present the responses from all LLMs in a structured tabular format, use the `print_responses(task)` method. Example: To present the responses from all LLMs in a structured tabular format, use the `print_responses(task)` method. Example:
```python ```python
god_mode.print_responses("Summarize the main points of 'War and Peace.'") parallelizer.print_responses("Summarize the main points of 'War and Peace.'")
``` ```
### Saving Responses to a File ### Saving Responses to a File
@ -119,15 +119,15 @@ god_mode.print_responses("Summarize the main points of 'War and Peace.'")
Users can save the responses to a file using the `save_responses_to_file(filename)` method. This is useful for archiving and reviewing responses later. Example: Users can save the responses to a file using the `save_responses_to_file(filename)` method. This is useful for archiving and reviewing responses later. Example:
```python ```python
god_mode.save_responses_to_file("responses.txt") parallelizer.save_responses_to_file("responses.txt")
``` ```
### Task History ### Task History
The `GodMode` class keeps track of the task history. Developers can access the task history using the `get_task_history()` method. Example: The `ModelParallelizer` class keeps track of the task history. Developers can access the task history using the `get_task_history()` method. Example:
```python ```python
task_history = god_mode.get_task_history() task_history = parallelizer.get_task_history()
for i, task in enumerate(task_history): for i, task in enumerate(task_history):
print(f"Task {i + 1}: {task}") print(f"Task {i + 1}: {task}")
``` ```
@ -136,7 +136,7 @@ for i, task in enumerate(task_history):
### Parallel Execution ### Parallel Execution
`GodMode` employs multithreading to execute tasks concurrently. This parallel processing capability significantly improves the efficiency of handling multiple tasks simultaneously. `ModelParallelizer` employs multithreading to execute tasks concurrently. This parallel processing capability significantly improves the efficiency of handling multiple tasks simultaneously.
### Response Visualization ### Response Visualization
@ -144,13 +144,13 @@ The structured tabular format used for presenting responses simplifies the compa
## 6. Examples <a name="examples"></a> ## 6. Examples <a name="examples"></a>
Let's explore additional usage examples to illustrate the versatility of `GodMode` in handling various NLP tasks. Let's explore additional usage examples to illustrate the versatility of `ModelParallelizer` in handling various NLP tasks.
### Example 1: Sentiment Analysis ### Example 1: Sentiment Analysis
```python ```python
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.swarms import GodMode from swarms.swarms import ModelParallelizer
from swarms.workers.worker import Worker from swarms.workers.worker import Worker
# Create an instance of an LLM for sentiment analysis # Create an instance of an LLM for sentiment analysis
@ -184,15 +184,15 @@ worker3 = Worker(
temperature=0.5, temperature=0.5,
) )
# Register the worker agents with GodMode # Register the worker agents with ModelParallelizer
agents = [worker1, worker2, worker3] agents = [worker1, worker2, worker3]
god_mode = GodMode(agents) parallelizer = ModelParallelizer(agents)
# Task for sentiment analysis # Task for sentiment analysis
task = "Please analyze the sentiment of the following sentence: 'This movie is amazing!'" task = "Please analyze the sentiment of the following sentence: 'This movie is amazing!'"
# Print responses from all agents # Print responses from all agents
god_mode.print_responses(task) parallelizer.print_responses(task)
``` ```
### Example 2: Translation ### Example 2: Translation
@ -200,22 +200,22 @@ god_mode.print_responses(task)
```python ```python
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.swarms import GodMode from swarms.swarms import ModelParallelizer
# Define LLMs for translation tasks # Define LLMs for translation tasks
translator1 = OpenAIChat(model_name="translator-en-fr", openai_api_key="api-key", temperature=0.7) translator1 = OpenAIChat(model_name="translator-en-fr", openai_api_key="api-key", temperature=0.7)
translator2 = OpenAIChat(model_name="translator-en-es", openai_api_key="api-key", temperature=0.7) translator2 = OpenAIChat(model_name="translator-en-es", openai_api_key="api-key", temperature=0.7)
translator3 = OpenAIChat(model_name="translator-en-de", openai_api_key="api-key", temperature=0.7) translator3 = OpenAIChat(model_name="translator-en-de", openai_api_key="api-key", temperature=0.7)
# Register translation agents with GodMode # Register translation agents with ModelParallelizer
translators = [translator1, translator2, translator3] translators = [translator1, translator2, translator3]
god_mode = GodMode(translators) parallelizer = ModelParallelizer(translators)
# Task for translation # Task for translation
task = "Translate the following English text to French: 'Hello, how are you?'" task = "Translate the following English text to French: 'Hello, how are you?'"
# Print translated responses from all agents # Print translated responses from all agents
god_mode.print_responses(task) parallelizer.print_responses(task)
``` ```
### Example 3: Summarization ### Example 3: Summarization
@ -223,7 +223,7 @@ god_mode.print_responses(task)
```python ```python
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.swarms import GodMode from swarms.swarms import ModelParallelizer
# Define LLMs for summarization tasks # Define LLMs for summarization tasks
@ -231,19 +231,19 @@ summarizer1 = OpenAIChat(model_name="summarizer-en", openai_api_key="api-key", t
summarizer2 = OpenAIChat(model_name="summarizer-en", openai_api_key="api-key", temperature=0.6) summarizer2 = OpenAIChat(model_name="summarizer-en", openai_api_key="api-key", temperature=0.6)
summarizer3 = OpenAIChat(model_name="summarizer-en", openai_api_key="api-key", temperature=0.6) summarizer3 = OpenAIChat(model_name="summarizer-en", openai_api_key="api-key", temperature=0.6)
# Register summarization agents with GodMode # Register summarization agents with ModelParallelizer
summarizers = [summarizer1, summarizer2, summarizer3] summarizers = [summarizer1, summarizer2, summarizer3]
god_mode = GodMode(summarizers) parallelizer = ModelParallelizer(summarizers)
# Task for summarization # Task for summarization
task = "Summarize the main points of the article titled 'Climate Change and Its Impact on the Environment.'" task = "Summarize the main points of the article titled 'Climate Change and Its Impact on the Environment.'"
# Print summarized responses from all agents # Print summarized responses from all agents
god_mode.print_responses(task) parallelizer.print_responses(task)
``` ```
## 7. Conclusion <a name="conclusion"></a> ## 7. Conclusion <a name="conclusion"></a>
In conclusion, the `GodMode` class is a powerful tool for managing and orchestrating multiple Language Model Models in natural language processing tasks. Its ability to distribute tasks, collect responses, and present them in a structured format makes it invaluable for streamlining NLP workflows. By following the provided documentation, users can harness the full potential of `GodMode` to enhance their natural language processing projects. In conclusion, the `ModelParallelizer` class is a powerful tool for managing and orchestrating multiple Language Model Models in natural language processing tasks. Its ability to distribute tasks, collect responses, and present them in a structured format makes it invaluable for streamlining NLP workflows. By following the provided documentation, users can harness the full potential of `ModelParallelizer` to enhance their natural language processing projects.
For further information on specific LLMs or advanced usage, refer to the documentation of the respective models and their APIs. Additionally, external resources on parallel execution and response visualization can provide deeper insights into these topics. For further information on specific LLMs or advanced usage, refer to the documentation of the respective models and their APIs. Additionally, external resources on parallel execution and response visualization can provide deeper insights into these topics.

@ -0,0 +1,86 @@
# check_device
# Module/Function Name: check_device
The `check_device` is a utility function in PyTorch designed to identify and return the appropriate device(s) for CUDA processing. If CUDA is not available, a CPU device is returned. If CUDA is available, the function returns a list of all available GPU devices.
The function examines the CUDA availability, checks for multiple GPUs, and finds additional properties for each device.
## Function Signature and Arguments
**Signature:**
```python
def check_device(
log_level: Any = logging.INFO,
memory_threshold: float = 0.8,
capability_threshold: float = 3.5,
return_type: str = "list",
) -> Union[torch.device, List[torch.device]]
```
| Parameter | Data Type | Default Value | Description |
| ------------- | ------------- | ------------- | ------------- |
| `log_level` | Any | logging.INFO | The log level. |
| `memory_threshold` | float | 0.8 | It is used to check the threshold of memory used on the GPU(s). |
| `capability_threshold` | float | 3.5 | It is used to consider only those GPU(s) which have higher compute capability compared to the threshold. |
| `return_type` | str | "list" | Depending on the `return_type` either a list of devices can be returned or a single device. |
This function does not take any mandatory argument. However, it supports optional arguments such as `log_level`, `memory_threshold`, `capability_threshold`, and `return_type`.
**Returns:**
- A single torch.device if one device or list of torch.devices if multiple CUDA devices are available, else returns the CPU device if CUDA is not available.
## Usage and Examples
### Example 1: Basic Usage
```python
import torch
import logging
from swarms.utils import check_device
# Basic usage
device = check_device(
log_level=logging.INFO,
memory_threshold=0.8,
capability_threshold=3.5,
return_type="list"
)
```
### Example 2: Using CPU when CUDA is not available
```python
import torch
import logging
from swarms.utils import check_device
# When CUDA is not available
device = check_device()
print(device) # If CUDA is not available it should return torch.device('cpu')
```
### Example 3: Multiple GPU Available
```python
import torch
import logging
from swarms.utils import check_device
# When multiple GPUs are available
device = check_device()
print(device) # Should return a list of available GPU devices
```
## Tips and Additional Information
- This function is useful when a user wants to exploit CUDA capabilities for faster computation but unsure of the available devices. This function abstracts all the necessary checks and provides a list of CUDA devices to the user.
- The `memory_threshold` and `capability_threshold` are utilized to filter the GPU devices. The GPUs which have memory usage above the `memory_threshold` and compute capability below the `capability_threshold` are not considered.
- As of now, CPU does not have memory or capability values, therefore, in the respective cases, it will be returned as default without any comparison.
## Relevant Resources
- For more details about the CUDA properties functions used (`torch.cuda.get_device_capability, torch.cuda.get_device_properties`), please refer to the official PyTorch [CUDA semantics documentation](https://pytorch.org/docs/stable/notes/cuda.html).
- For more information about Torch device objects, you can refer to the official PyTorch [device documentation](https://pytorch.org/docs/stable/tensor_attributes.html#torch-device).
- For a better understanding of how the `logging` module works in Python, see the official Python [logging documentation](https://docs.python.org/3/library/logging.html).

@ -0,0 +1,86 @@
# display_markdown_message
# Module Name: `display_markdown_message`
## Introduction
`display_markdown_message` is a useful utility function for creating visually-pleasing markdown messages within Python scripts. This function automatically manages multiline strings with lots of indentation and makes single-line messages with ">" tags easy to read, providing users with convenient and elegant logging or messaging capacity.
## Function Definition and Arguments
Function Definition:
```python
def display_markdown_message(message: str, color: str = "cyan"):
```
This function accepts two parameters:
|Parameter |Type |Default Value |Description |
|--- |--- |--- |--- |
|message |str |None |This is the message that is to be displayed. This should be a string. It can contain markdown syntax.|
|color |str |"cyan" |This allows you to choose the color of the message. Default is "cyan". Accepts any valid color name.|
## Functionality and Usage
This utility function is used to display a markdown formatted message on the console. It accepts a message as a string and an optional color for the message. The function is ideal for generating stylized print outputs such as headers, status updates or pretty notifications.
By default, any text within the string which is enclosed within `>` tags or `---` is treated specially:
- Lines encased in `>` tags are rendered as a blockquote in markdown.
- Lines consisting of `---` are rendered as horizontal rules.
The function automatically strips off leading and trailing whitespaces from any line within the message, maintaining aesthetic consistency in your console output.
### Usage Examples
#### Basic Example
```python
display_markdown_message("> This is an important message", color="red")
```
Output:
```md
> **This is an important message**
```
This example will print out the string "This is an important message" in red color, enclosed in a blockquote tag.
#### Multiline Example
```python
message = """
> Header
My normal message here.
---
Another important information
"""
display_markdown_message(message, color="green")
```
Output:
```md
> **Header**
My normal message here.
_____
Another important information
```
The output is a green colored markdown styled text with the "Header" enclosed in a blockquote, followed by the phrase "My normal message here", a horizontal rule, and finally another phrase, "Another important information".
## Additional Information
Use newline characters `\n` to separate the lines of the message. Remember, each line of the message is stripped of leading and trailing whitespaces. If you have special markdown requirements, you may need to revise the input message string accordingly.
Also, keep in mind the console or terminal's ability to display the chosen color. If a particular console does not support the chosen color, the output may fallback to the default console color.
For a full list of color names supported by the `Console` module, refer to the official [Console documentation](http://console.readthedocs.io/).
## References and Resources
- Python Strings: https://docs.python.org/3/tutorial/introduction.html#strings
- Python Markdown: https://pypi.org/project/markdown/
- Console module: https://console.readthedocs.io/

@ -0,0 +1,114 @@
# extract_code_from_markdown
# swarms.utils Module
The `swarms.utils` module provides utility functions designed to facilitate specific tasks within the main Swarm codebase. The function `extract_code_from_markdown` is a critical function within this module that we will document in this example.
## Overview and Introduction
Many software projects use Markdown extensively for writing documentation, tutorials, and other text documents that can be easily rendered and viewed in different formats, including HTML.
The `extract_code_from_markdown` function plays a crucial role within the swarms.utils library. As developers write large volumes of Markdown, they often need to isolate code snippets from the whole Markdown file body. These isolated snippets can be used to generate test cases, transform into other languages, or analyze for metrics.
## Function Definition: `extract_code_from_markdown`
```python
def extract_code_from_markdown(markdown_content: str) -> str:
"""
Extracts code blocks from a Markdown string and returns them as a single string.
Args:
- markdown_content (str): The Markdown content as a string.
Returns:
- str: A single string containing all the code blocks separated by newlines.
"""
# Regular expression for fenced code blocks
pattern = r"```(?:\w+\n)?(.*?)```"
matches = re.findall(pattern, markdown_content, re.DOTALL)
# Concatenate all code blocks separated by newlines
return "\n".join(code.strip() for code in matches)
```
### Arguments
The function `extract_code_from_markdown` takes one argument:
| Argument | Description | Type | Default Value |
|-----------------------|----------------------------------------|-------------|-------------------|
| markdown_content | The input markdown content as a string | str | N/A |
## Function Explanation and Usage
This function uses a regular expression to find all fenced code blocks in a Markdown string. The pattern `r"```(?:\w+\n)?(.*?)```"` matches strings that start and end with three backticks, optionally followed by a newline and then any number of any characters (the `.*?` part) until the first occurrence of another triple backtick set.
Once we have the matches, we join all the code blocks into a single string, each block separated by a newline.
The method's functionality is particularly useful when we need to extract code blocks from markdown content for secondary processing, such as syntax highlighting or execution in a different environment.
### Usage Examples
Below are three examples of how you might use this function:
#### Example 1:
Extracting code blocks from a simple markdown string.
```python
import re
from swarms.utils import extract_code_from_markdown
markdown_string = '''# Example
This is an example of a code block:
```python
print("Hello World!")
``` '''
print(extract_code_from_markdown(markdown_string))
```
#### Example 2:
Extracting code blocks from a markdown file.
```python
import re
def extract_code_from_markdown(markdown_content: str) -> str:
pattern = r"```(?:\w+\n)?(.*?)```"
matches = re.findall(pattern, markdown_content, re.DOTALL)
return "\n".join(code.strip() for code in matches)
# Assume that 'example.md' contains multiple code blocks
with open('example.md', 'r') as file:
markdown_content = file.read()
print(extract_code_from_markdown(markdown_content))
```
#### Example 3:
Using the function in a pipeline to extract and then analyze code blocks.
```python
import re
def extract_code_from_markdown(markdown_content: str) -> str:
pattern = r"```(?:\w+\n)?(.*?)```"
matches = re.findall(pattern, markdown_content, re.DOTALL)
return "\n".join(code.strip() for code in matches)
def analyze_code_blocks(code: str):
# Add your analysis logic here
pass
# Assume that 'example.md' contains multiple code blocks
with open('example.md', 'r') as file:
markdown_content = file.read()
code_blocks = extract_code_from_markdown(markdown_content)
analyze_code_blocks(code_blocks)
```
## Conclusion
This concludes the detailed documentation of the `extract_code_from_markdown` function from the swarms.utils module. With this documentation, you should be able to understand the function's purpose, how it works, its parameters, and see examples of how to use it effectively.

@ -0,0 +1,94 @@
# find_image_path
Firstly, we will divide this documentation into multiple sections.
# Overview
The module **swarms.utils** has the main goal of providing necessary utility functions that are crucial during the creation of the swarm intelligence frameworks. These utility functions can include common operations such as handling input-output operations for files, handling text parsing, and handling basic mathematical computations necessary during the creation of swarm intelligence models.
The current function `find_image_path` in the module is aimed at extracting an image path from a given text document.
# Function Detailed Explanation
## Definition
The function `find_image_path` takes a singular argument as an input:
```python
def find_image_path(text):
# function body
```
## Parameter
The parameter `text` in the function is a string that represents the document or text from which the function is trying to extract all paths to the images present. The function scans the given text, looking for <em>absolute</em> or <em>relative</em> paths to image files (.png, .jpg, .jpeg) on the disk.
| Parameter Name | Data Type | Default Value | Description |
|:--------------:|:---------:|:-------------:|:--------:|
| `text` | `str` | - | The text content to scan for image paths |
## Return Value
The return value of the function `find_image_path` is a string that represents the longest existing image path extracted from the input text. If no image paths exist within the text, the function returns `None`.
| Return Value | Data Type | Description |
|:------------:|:-----------:|:-----------:|
| Path | `str` | Longest image path found in the text or `None` if no path found |
# Function's Code
The function `find_image_path` performs text parsing and pattern recognition to find image paths within the provided text. The function uses `regular expressions (re)` module to detect all potential paths.
```python
def find_image_path(text):
pattern = r"([A-Za-z]:\\[^:\n]*?\.(png|jpg|jpeg|PNG|JPG|JPEG))|(/[^:\n]*?\.(png|jpg|jpeg|PNG|JPG|JPEG))"
matches = [
match.group()
for match in re.finditer(pattern, text)
if match.group()
]
matches += [match.replace("\\", "") for match in matches if match]
existing_paths = [
match for match in matches if os.path.exists(match)
]
return max(existing_paths, key=len) if existing_paths else None
```
# Usage Examples
Let's consider examples of how the function `find_image_path` can be used in different scenarios.
**Example 1:**
Consider the case where a text without any image path is provided.
```python
from swarms.utils import find_image_path
text = "There are no image paths in this text"
print(find_image_path(text)) # Outputs: None
```
**Example 2:**
Consider the case where the text has multiple image paths.
```python
from swarms.utils import find_image_path
text = "Here is an image path: /home/user/image1.png. Here is another one: C:\\Users\\User\\Documents\\image2.jpeg"
print(find_image_path(text)) # Outputs: the longest image path (depends on your file system and existing files)
```
**Example 3:**
In the final example, we consider a case where the text has an image path, but the file does not exist.
```python
from swarms.utils import find_image_path
text = "Here is an image path: /home/user/non_existant.png"
print(find_image_path(text)) # Outputs: None
```
# Closing Notes
In conclusion, the `find_image_path` function is crucial in the `swarms.utils` module as it supports a key operation of identifying image paths within given input text. This allows users to automate the extraction of such data from larger documents/text. However, it's important to note the function returns only existing paths in your file system and only the longest if multiple exist.

@ -0,0 +1,82 @@
# limit_tokens_from_string
## Introduction
The `Swarms.utils` library contains utility functions used across codes that handle machine learning and other operations. The `Swarms.utils` library includes a notable function named `limit_tokens_from_string()`. This function particularly limits the number of tokens in a given string.
# Function: limit_tokens_from_string()
Within the `Swarms.utils` library, there is a method `limit_tokens_from_string(string: str, model: str = "gpt-4", limit: int = 500) -> str:`
## Description
The function `limit_tokens_from_string()` limits the number of tokens in a given string based on the specified threshold. It is primarily useful when you are handling large text data and need to chunk or limit your text to a certain length. Limiting token length could be useful in various scenarios such as when working with data with limited computational resources, or when dealing with models that accept a specific maximum limit of text.
## Parameters
| Parameter | Type | Default Value | Description
| :-----------| :----------- | :------------ | :------------|
| `string` | `str` | `None` | The input string from which the tokens need to be limited. |
| `model` | `str` | `"gpt-4"` | The model used to encode and decode the token. The function defaults to `gpt-4` but you can specify any model supported by `tiktoken`. If a model is not found, it falls back to use `gpt2` |
| `limit` | `int` | `500` | The limit up to which the tokens have to be sliced. Default limit is 500.|
## Returns
| Return | Type | Description
| :-----------| :----------- | :------------
| `out` | `str` | A string that is constructed back from the encoded tokens that have been limited to a count of `limit` |
## Method Detail and Usage Examples
The method `limit_tokens_from_string()` takes in three parameters - `string`, `model`, and `limit`.
First, it tries to get the encoding for the model specified in the `model` argument using `tiktoken.encoding_for_model(model)`. In case the specified model is not found, the function uses `gpt2` model encoding as a fallback.
Next, the input `string` is tokenized using the `encode` method on the `encoding` tensor. This results in the `encoded` tensor.
Then, the function slices the `encoded` tensor to get the first `limit` number of tokens.
Finally, the function converts back the tokens into the string using the `decode` method of the `encoding` tensor. The resulting string `out` is returned.
### Example 1:
```python
from swarms.utils import limit_tokens_from_string
# longer input string
string = "This is a very long string that needs to be tokenized. This string might exceed the maximum token limit, so it will need to be truncated."
# lower token limit
limit = 10
output = limit_tokens_from_string(string, limit=limit)
```
### Example 2:
```python
from swarms.utils import limit_tokens_from_string
# longer input string with different model
string = "This string will be tokenized using gpt2 model. If the string is too long, it will be truncated."
# model
model = "gpt2"
output = limit_tokens_from_string(string, model=model)
```
### Example 3:
```python
from swarms.utils import limit_tokens_from_string
# try with a random model string
string = "In case the method does not find the specified model, it will fall back to gpt2 model."
# model
model = "gpt-4"
output = limit_tokens_from_string(string, model=model)
```
**Note:** If specifying a model not supported by `tiktoken` intentionally, it will fall back to `gpt2` model for encoding.

@ -0,0 +1,102 @@
# load_model_torch
# load_model_torch: Utility Function Documentation
## Introduction:
`load_model_torch` is a utility function in the `swarms.utils` library that is designed to load a saved PyTorch model and move it to the designated device. It provides flexibility allowing the user to specify the model file location, the device where the loaded model should be moved to, whether to strictly enforce the keys in the state dictionary to match the keys returned by the model's `state_dict()`, and many more.
Moreover, if the saved model file only contains the state dictionary, but not the model architecture, you can pass the model architecture as an argument.
## Function Definition and Parameters:
```python
def load_model_torch(
model_path: str = None,
device: torch.device = None,
model: nn.Module = None,
strict: bool = True,
map_location=None,
*args,
**kwargs,
) -> nn.Module:
```
The following table describes the parameters in detail:
| Name | Type | Default Value | Description |
| ------ | ------ | ------------- | ------------|
| model_path | str | None | A string specifying the path to the saved model file on disk. _Required_ |
| device | torch.device | None | A `torch.device` object that specifies the target device for the loaded model. If not provided, the function checks for the availability of a GPU and uses it if available. If not, it defaults to CPU. |
| model | nn.Module | None | An instance of `torch.nn.Module` representing the model's architecture. This parameter is required if the model file only contains the model's state dictionary and not the model architecture. |
| strict | bool | True | A boolean that determines whether to strictly enforce that the keys in the state dictionary match the keys returned by the model's `state_dict()` function. If set to `True`, the function will raise a KeyError when the state dictionary and `state_dict()` keys do not match. |
| map_location | callable | None | A function to remap the storage locations of the loaded model's parameters. Useful for loading models saved on a device type that is different from the current one. |
| *args, **kwargs | - | - | Additional arguments and keyword arguments to be passed to `torch.load`.
Returns:
- `torch.nn.Module` - The loaded model after moving it to the desired device.
Raises:
- `FileNotFoundError` - If the saved model file is not found at the specified path.
- `RuntimeError` - If there was an error while loading the model.
## Example of Usage:
This function can be used directly inside your code as shown in the following examples:
### Example 1:
Loading a model without specifying a device results in the function choosing the most optimal available device automatically.
```python
from swarms.utils import load_model_torch
import torch.nn as nn
# Assume `mymodel.pth` is in the current directory
model_path = "./mymodel.pth"
# Define your model architecture if the model file only contains state dict
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(10, 2)
def forward(self, x):
return self.linear(x)
model = MyModel()
# Load the model
loaded_model = load_model_torch(model_path, model=model)
# Now you can use the loaded model for prediction or further training
```
### Example 2:
Explicitly specifying a device.
```python
# Assume `mymodel.pth` is in the current directory
model_path = "./mymodel.pth"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
loaded_model = load_model_torch(model_path, device=device)
```
### Example 3:
Using a model file that contains only the state dictionary, not the model architecture.
```python
# Assume `mymodel_state_dict.pth` is in the current directory
model_path = "./mymodel_state_dict.pth"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define your model architecture
model = MyModel()
# Load the model
loaded_model = load_model_torch(model_path, device=device, model=model)
```
This gives you an insight on how to use `load_model_torch` utility function from `swarms.utils` library efficiently. Always remember to pass the model path argument while the other arguments can be optional based on your requirements. Furthermore, handle exceptions properly for smooth functioning of your PyTorch related projects.

@ -1,99 +1,78 @@
# Math Evaluation Decorator Documentation # math_eval
## Introduction
The Math Evaluation Decorator is a utility function that helps you compare the output of two functions, `func1` and `func2`, when given the same input. This decorator is particularly useful for validating whether a generated function produces the same results as a ground truth function. This documentation provides a detailed explanation of the Math Evaluation Decorator, its purpose, usage, and examples.
## Purpose The `math_eval` function is a python decorator that wraps around a function to run two functions on the same inputs and compare their results. The decorator can be used for testing functions that are expected to have equivalent functionality, or in situations where two different methods are used to calculate or retrieve a value, and the results need to be compared.
The Math Evaluation Decorator serves the following purposes:
1. To compare the output of two functions, `func1` and `func2`, when given the same input.
2. To log any errors that may occur during the evaluation.
3. To provide a warning if the outputs of `func1` and `func2` do not match.
## Decorator Definition The `math_eval` function in this case accepts two functions as parameters: `func1` and `func2`, and returns a decorator. This returned decorator, when applied to a function, enhances that function to execute both `func1` and `func2`, and compare the results.
```python
def math_eval(func1, func2):
"""Math evaluation decorator.
Args:
func1 (_type_): The first function to be evaluated.
func2 (_type_): The second function to be evaluated.
Example:
>>> @math_eval(ground_truth, generated_func)
>>> def test_func(x):
>>> return x
>>> result1, result2 = test_func(5)
>>> print(f"Result from ground_truth: {result1}")
>>> print(f"Result from generated_func: {result2}")
"""
```
### Parameters
| Parameter | Type | Description |
|-----------|--------|--------------------------------------------------|
| `func1` | _type_ | The first function to be evaluated. |
| `func2` | _type_ | The second function to be evaluated. |
## Usage This can be particularly useful in situations when you are implementing a new function and wants to compare its behavior and results with that of an existing one under the same set of input parameters. It also logs the results if they do not match which could be quite useful during the debug process.
The Math Evaluation Decorator is used as a decorator for a test function that you want to evaluate. Here's how to use it:
1. Define the two functions, `func1` and `func2`, that you want to compare. ## Usage Example
2. Create a test function and decorate it with `@math_eval(func1, func2)`. Let's say you have two functions: `ground_truth` and `generated_func`, that have similar functionalities or serve the same purpose. You are writing a new function called `test_func`, and you'd like to compare the results of `ground_truth` and `generated_func` when `test_func` is run. Here is how you would use the `math_eval` decorator:
3. In the test function, provide the input(s) to both `func1` and `func2`.
4. The decorator will compare the outputs of `func1` and `func2` when given the same input(s).
5. Any errors that occur during the evaluation will be logged.
6. If the outputs of `func1` and `func2` do not match, a warning will be generated.
## Examples
### Example 1: Comparing Two Simple Functions
```python ```python
# Define the ground truth function
def ground_truth(x):
return x * 2
# Define the generated function
def generated_func(x):
return x - 10
# Create a test function and decorate it
@math_eval(ground_truth, generated_func) @math_eval(ground_truth, generated_func)
def test_func(x): def test_func(x):
return x return x
# Evaluate the test function with an input
result1, result2 = test_func(5) result1, result2 = test_func(5)
# Print the results
print(f"Result from ground_truth: {result1}") print(f"Result from ground_truth: {result1}")
print(f"Result from generated_func: {result2}") print(f"Result from generated_func: {result2}")
``` ```
In this example, the decorator compares the outputs of `ground_truth` and `generated_func` when given the input `5`. If the outputs do not match, a warning will be generated. ## Parameters
| Parameter | Data Type | Description |
| ---- | ---- | ---- |
| func1 | Callable | The first function whose result you want to compare. |
| func2 | Callable | The second function whose result you want to compare. |
The data types for `func1` and `func2` cannot be specified as they can be any python function (or callable object). The decorator verifies that they are callable and exceptions are handled within the decorator function.
## Return Values
### Example 2: Handling Errors The `math_eval` function does not return a direct value, since it is a decorator. When applied to a function, it alters the behavior of the wrapped function to return two values:
If an error occurs in either `func1` or `func2`, the decorator will log the error and set the result to `None`. This ensures that the evaluation continues even if one of the functions encounters an issue.
## Additional Information and Tips 1. `result1`: The result of running `func1` with the given input parameters.
2. `result2`: The result of running `func2` with the given input parameters.
- The Math Evaluation Decorator is a powerful tool for comparing the outputs of functions, especially when validating machine learning models or generated code. These two return values are provided in that order as a tuple.
- Ensure that the functions `func1` and `func2` take the same input(s) to ensure a meaningful comparison. ## Source Code
- Regularly check the logs for any errors or warnings generated during the evaluation. Here's how to implement the `math_eval` decorator:
- If the decorator logs a warning about mismatched outputs, investigate and debug the functions accordingly. ```python
import functools
import logging
def math_eval(func1, func2):
"""Math evaluation decorator."""
## References and Resources def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
result1 = func1(*args, **kwargs)
except Exception as e:
logging.error(f"Error in func1: {e}")
result1 = None
- For more information on Python decorators, refer to the [Python Decorators Documentation](https://docs.python.org/3/glossary.html#term-decorator). try:
result2 = func2(*args, **kwargs)
except Exception as e:
logging.error(f"Error in func2: {e}")
result2 = None
- Explore advanced use cases of the Math Evaluation Decorator in your projects to ensure code correctness and reliability. if result1 != result2:
logging.warning(
f"Outputs do not match: {result1} != {result2}"
)
This comprehensive documentation explains the Math Evaluation Decorator, its purpose, usage, and examples. Use this decorator to compare the outputs of functions and validate code effectively. return result1, result2
return wrapper
return decorator
```
Please note that the code is logging exceptions to facilitate debugging, but the actual processing and handling of the exception would depend on how you want your application to respond to exceptions. Therefore, you may want to customize the error handling depending upon your application's requirements.

@ -0,0 +1,86 @@
# metrics_decorator
This documentation explains the use and functionality of the `metrics_decorator` function in the LLM (Large Language Models).
The `metrics_decorator` function is a standard Python decorator that augments a specific function by wrapping extra functionality around it. It is commonly used for things like timing, logging or memoization.
--
The `metrics_decorator` in LLM is specially designed to measure and calculate three key performance metrics when generating language models:
1. `Time to First Token`: Measures the elapsed time from the start of function execution until the generation of the first token.
2. `Generation Latency`: It measures the total time taken for a complete run.
3. `Throughput`: Calculates the rate of production of tokens per unit of time.
```python
def metrics_decorator(func: Callable):
"""
Metrics decorator for LLM
Args:
func (Callable): The function to be decorated.
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
"""
An inner function that wraps the decorated function. It calculates 'Time to First Token',
'Generation Latency' and 'Throughput' metrics.
Args:
self : The object instance.
*args : Variable length argument list of the decorated function.
**kwargs : Arbitrary keyword arguments of the decorated function.
"""
# Measure Time to First Token
start_time = time.time()
result = func(self, *args, **kwargs)
first_token_time = time.time()
# Measure Generation Latency
end_time = time.time()
# Calculate Throughput (assuming the function returns a list of tokens)
throughput = len(result) / (end_time - start_time)
return f"""
Time to First Token: {first_token_time - start_time}
Generation Latency: {end_time - start_time}
Throughput: {throughput}
"""
return wrapper
```
## Example Usage
Now let's discuss the usage of the `metrics_decorator` function with an example.
Assuming that we have a language generation function called `text_generator()` that generates a list of tokens.
```python
@metrics_decorator
def text_generator(self, text: str):
"""
Args:
text (str): The input text.
Returns:
A list of tokens generated from the input text.
"""
# language generation implementation goes here
return tokens
# Instantiate the class and call the decorated function
obj = ClassName()
obj.text_generator("Hello, world!")
```
When the decorated `text_generator()` function is called, it will measure and return:
- Time elapsed until the first token is generated.
- The total execution time of the function.
- The rate of tokens generation per unit time.
This example provides a basic overview of how a function can be decorated with the `metrics_decorator`. The provided `func` argument could be any method from any class, as long as it complies with the structure defined in `metrics_decorator`. It is worth noting that the decorated function must return a list of tokens for the `Throughput` metric to work correctly.
Remember, applying the `metrics_decorator` does not affect the original functionality of the decorated function, it just adds additional measurement and logging capabilities to it. It's a great utility for tracking and optimizing the performance of your language models.

@ -0,0 +1,71 @@
# pdf_to_text
## Introduction
The function `pdf_to_text` is a Python utility for converting a PDF file into a string of text content. It leverages the `PyPDF2` library, an excellent Python library for processing PDF files. The function takes in a PDF file's path and reads its content, subsequently returning the extracted textual data.
This function can be very useful when you want to extract textual information from PDF files automatically. For instance, when processing a large number of documents, performing textual analysis, or when you're dealing with text data that is only available in PDF format.
## Class / Function Definition
`pdf_to_text` is a standalone function defined as follows:
```python
def pdf_to_text(pdf_path: str) -> str:
```
## Parameters
| Parameter | Type | Description |
|:-:|---|---|
| pdf_path | str | The path to the PDF file to be converted |
## Returns
| Return Value | Type | Description |
|:-:|---|---|
| text | str | The text extracted from the PDF file. |
## Raises
| Exception | Description |
|---|---|
| FileNotFoundError | If the PDF file is not found at the specified path. |
| Exception | If there is an error in reading the PDF file. |
## Function Description
`pdf_to_text` utilises the `PdfReader` function from the `PyPDF2` library to read the PDF file. If the PDF file does not exist at the specified path or there was an error while reading the file, appropriate exceptions will be raised. It then iterates through each page in the PDF and uses the `extract_text` function to extract the text content from each page. These contents are then concatenated into a single variable and returned as the result.
## Usage Examples
To use this function, you first need to install the `PyPDF2` library. It can be installed via pip:
```python
!pip install pypdf2
```
Then, you should import the `pdf_to_text` function:
```python
from swarms.utils import pdf_to_text
```
Here is an example of how to use `pdf_to_text`:
```python
# Define the path to the pdf file
pdf_path = 'sample.pdf'
# Use the function to extract text
text = pdf_to_text(pdf_path)
# Print the extracted text
print(text)
```
## Tips and Additional Information
- Ensure that the PDF file path is valid and that the file exists at the specified location. If the file does not exist, a `FileNotFoundError` will be raised.
- This function reads the text from the PDF. It does not handle images, graphical elements, or any non-text content.
- If the PDF contains scanned images rather than textual data, the `extract_text` function may not be able to extract any text. In such cases, you would require OCR (Optical Character Recognition) tools to extract the text.
- Be aware of the possibility that the output string might contain special characters or escape sequences because they were part of the PDF's content. You might need to clean the resulting text according to your requirements.
- The function uses the PyPDF2 library to facilitate the PDF reading and text extraction. For any issues related to PDF manipulation, consult the [PyPDF2 library documentation](https://pythonhosted.org/PyPDF2/).

@ -0,0 +1,102 @@
# prep_torch_inference
```python
def prep_torch_inference(
model_path: str = None,
device: torch.device = None,
*args,
**kwargs,
):
"""
Prepare a Torch model for inference.
Args:
model_path (str): Path to the model file.
device (torch.device): Device to run the model on.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
torch.nn.Module: The prepared model.
"""
try:
model = load_model_torch(model_path, device)
model.eval()
return model
except Exception as e:
# Add error handling code here
print(f"Error occurred while preparing Torch model: {e}")
return None
```
This method is part of the 'swarms.utils' module. It accepts a model file path and a torch device as input and returns a model that is ready for inference.
## Detailed Functionality
The method loads a PyTorch model from the file specified by `model_path`. This model is then moved to the specified `device` if it is provided. Subsequently, the method sets the model to evaluation mode by calling `model.eval()`. This is a crucial step when preparing a model for inference, as certain layers like dropout or batch normalization behave differently during training vs during evaluation.
In the case of any exception (e.g., the model file not found or the device unavailable), it prints an error message and returns `None`.
## Parameters
| Parameter | Type | Description | Default |
|-----------|------|-------------|---------|
| model_path | str | Path to the model file. | None |
| device | torch.device | Device to run the model on. | None |
| args | tuple | Additional positional arguments. | None |
| kwargs | dict | Additional keyword arguments. | None |
## Returns
| Type | Description |
|------|-------------|
| torch.nn.Module | The prepared model ready for inference. Returns `None` if any exception occurs. |
## Usage Examples
Here are some examples of how you can use the `prep_torch_inference` method. Before that, you need to import the necessary modules as follows:
```python
import torch
from swarms.utils import prep_torch_inference, load_model_torch
```
### Example 1: Load a model for inference on CPU
```python
model_path = "saved_model.pth"
model = prep_torch_inference(model_path)
if model is not None:
print("Model loaded successfully and is ready for inference.")
else:
print("Failed to load the model.")
```
### Example 2: Load a model for inference on CUDA device
```python
model_path = "saved_model.pth"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = prep_torch_inference(model_path, device)
if model is not None:
print(f"Model loaded successfully on device {device} and is ready for inference.")
else:
print("Failed to load the model.")
```
### Example 3: Load a model with additional arguments for `load_model_torch`
```python
model_path = "saved_model.pth"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Suppose load_model_torch accepts an additional argument, map_location
model = prep_torch_inference(model_path, device, map_location=device)
if model is not None:
print(f"Model loaded successfully on device {device} and is ready for inference.")
else:
print("Failed to load the model.")
```
Please note, you need to ensure the given model path does exist and the device is available on your machine, else `prep_torch_inference` method will return `None`. Depending on the complexity and size of your models, loading them onto a specific device might take a while. So it's important that you take this into consideration when designing your machine learning workflows.

@ -0,0 +1,110 @@
# print_class_parameters
# Module Function Name: print_class_parameters
The `print_class_parameters` function is a utility function developed to help developers and users alike in retrieving and printing the parameters of a class constructor in Python, either in standard output or returned as a dictionary if the `api_format` is set to `True`.
This utility function utilizes the `inspect` module to fetch the signature of the class constructor and fetches the parameters from the obtained signature. The parameter values and their respective types are then outputted.
This function allows developers to easily inspect and understand the class' constructor parameters without the need to individually go through the class structure. This eases the testing and debugging process for developers and users alike, aiding in generating more efficient and readable code.
__Function Definition:__
```python
def print_class_parameters(cls, api_format: bool = False):
```
__Parameters:__
| Parameter | Type | Description | Default value |
|---|---|---|---|
| cls | type | The Python class to inspect. | None |
| api_format | bool | Flag to determine if the output should be returned in dictionary format (if set to True) or printed out (if set to False) | False |
__Functionality and Usage:__
Inside the `print_class_parameters` function, it starts by getting the signature of the constructor of the inputted class by invoking `inspect.signature(cls.__init__)`. It then extracts the parameters from the signature and stores it in the `params` variable.
If the `api_format` argument is set to `True`, instead of printing the parameters and their types, it stores them inside a dictionary where each key-value pair is a parameter name and its type. It then returns this dictionary.
If `api_format` is set to `False` or not set at all (defaulting to False), the function iterates over the parameters and prints the parameter name and its type. "self" parameters are excluded from the output as they are inherent to all class methods in Python.
A possible exception that may occur during the execution of this function is during the invocation of the `inspect.signature()` function call. If the inputted class does not have an `__init__` method or any error occurs during the retrieval of the class constructor's signature, an exception will be triggered. In that case, an error message that includes the error details is printed out.
__Usage and Examples:__
Assuming the existence of a class:
```python
class Agent:
def __init__(self, x: int, y: int):
self.x = x
self.y = y
```
One could use `print_class_parameters` in its typical usage:
```python
print_class_parameters(Agent)
```
Results in:
```
Parameter: x, Type: <class 'int'>
Parameter: y, Type: <class 'int'>
```
Or, with `api_format` set to `True`
```python
output = print_class_parameters(Agent, api_format=True)
print(output)
```
Results in:
```
{'x': "<class 'int'>", 'y': "<class 'int'>"}
```
__Note:__
The function `print_class_parameters` is not limited to custom classes. It can inspect built-in Python classes such as `list`, `dict`, and others. However, it is most useful when inspecting custom-defined classes that aren't inherently documented in Python or third-party libraries.
__Source Code__
```python
def print_class_parameters(cls, api_format: bool = False):
"""
Print the parameters of a class constructor.
Parameters:
cls (type): The class to inspect.
Example:
>>> print_class_parameters(Agent)
Parameter: x, Type: <class 'int'>
Parameter: y, Type: <class 'int'>
"""
try:
# Get the parameters of the class constructor
sig = inspect.signature(cls.__init__)
params = sig.parameters
if api_format:
param_dict = {}
for name, param in params.items():
if name == "self":
continue
param_dict[name] = str(param.annotation)
return param_dict
# Print the parameters
for name, param in params.items():
if name == "self":
continue
print(f"Parameter: {name}, Type: {param.annotation}")
except Exception as e:
print(f"An error occurred while inspecting the class: {e}")
```

@ -61,10 +61,6 @@ nav:
- Docker Container Setup: "docker_setup.md" - Docker Container Setup: "docker_setup.md"
- Swarms: - Swarms:
- Overview: "swarms/index.md" - Overview: "swarms/index.md"
- swarms.swarms:
- AbstractSwarm: "swarms/swarms/abstractswarm.md"
- GodMode: "swarms/swarms/godmode.md"
- Groupchat: "swarms/swarms/groupchat.md"
- swarms.workers: - swarms.workers:
- Overview: "swarms/workers/index.md" - Overview: "swarms/workers/index.md"
- AbstractWorker: "swarms/workers/abstract_worker.md" - AbstractWorker: "swarms/workers/abstract_worker.md"
@ -99,18 +95,33 @@ nav:
- ElevenLabsText2SpeechTool: "swarms/models/elevenlabs.md" - ElevenLabsText2SpeechTool: "swarms/models/elevenlabs.md"
- OpenAITTS: "swarms/models/openai_tts.md" - OpenAITTS: "swarms/models/openai_tts.md"
- Gemini: "swarms/models/gemini.md" - Gemini: "swarms/models/gemini.md"
- ZeroscopeTTV: "swarms/models/zeroscope.md"
- swarms.structs: - swarms.structs:
- Overview: "swarms/structs/overview.md" - Overview: "swarms/structs/overview.md"
- AutoScaler: "swarms/swarms/autoscaler.md" - AutoScaler: "swarms/swarms/autoscaler.md"
- Agent: "swarms/structs/agent.md" - Agent: "swarms/structs/agent.md"
- SequentialWorkflow: 'swarms/structs/sequential_workflow.md' - SequentialWorkflow: 'swarms/structs/sequential_workflow.md'
- Conversation: "swarms/structs/conversation.md" - Conversation: "swarms/structs/conversation.md"
- AbstractSwarm: "swarms/swarms/abstractswarm.md"
- ModelParallelizer: "swarms/swarms/ModelParallelizer.md"
- Groupchat: "swarms/swarms/groupchat.md"
- swarms.memory: - swarms.memory:
- Weaviate: "swarms/memory/weaviate.md" - Weaviate: "swarms/memory/weaviate.md"
- PineconeDB: "swarms/memory/pinecone.md" - PineconeDB: "swarms/memory/pinecone.md"
- PGVectorStore: "swarms/memory/pg.md" - PGVectorStore: "swarms/memory/pg.md"
- ShortTermMemory: "swarms/memory/short_term_memory.md" - ShortTermMemory: "swarms/memory/short_term_memory.md"
- swarms.utils: - swarms.utils:
- pdf_to_text: "swarms/utils/pdf_to_text.md"
- load_model_torch: "swarms/utils/load_model_torch.md"
- metrics_decorator: "swarms/utils/metrics_decorator.md"
- prep_torch_inference: "swarms/utils/prep_torch_inference.md"
- find_image_path: "swarms/utils/find_image_path.md"
- print_class_parameters: "swarms/utils/print_class_parameters.md"
- extract_code_from_markdown: "swarms/utils/extract_code_from_markdown.md"
- check_device: "swarms/utils/check_device.md"
- display_markdown_message: "swarms/utils/display_markdown_message.md"
- phoenix_tracer: "swarms/utils/phoenix_tracer.md"
- limit_tokens_from_string: "swarms/utils/limit_tokens_from_string.md"
- math_eval: "swarms/utils/math_eval.md" - math_eval: "swarms/utils/math_eval.md"
- Guides: - Guides:
- Overview: "examples/index.md" - Overview: "examples/index.md"

@ -1,26 +1,45 @@
from swarms.agents.simple_agent import SimpleAgent import os
from swarms.structs import Agent
from swarms.models import OpenAIChat
api_key = "" from dotenv import load_dotenv
llm = OpenAIChat( from swarms import (
openai_api_key=api_key, OpenAIChat,
temperature=0.5, Conversation,
) )
# Initialize the agent conv = Conversation(
agent = Agent( time_enabled=True,
llm=llm,
max_loops=5,
) )
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
# Run the language model in a loop
def interactive_conversation(llm, iters: int = 10):
conv = Conversation()
for i in range(iters):
user_input = input("User: ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task)
conv.add("assistant", out)
print(
f"Assistant: {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
agent = SimpleAgent(
name="Optimus Prime",
agent=agent,
# Memory
)
out = agent.run("Generate a 10,000 word blog on health and wellness.") # Replace with your LLM instance
print(out) interactive_conversation(llm)

@ -4,7 +4,6 @@ from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent
# Load the environment variables # Load the environment variables
load_dotenv() load_dotenv()

@ -1,16 +1,33 @@
from swarms.swarms import GodMode import os
from swarms.models import OpenAIChat
api_key = "" from dotenv import load_dotenv
llm = OpenAIChat(openai_api_key=api_key) from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
from swarms.swarms import ModelParallelizer
load_dotenv()
llms = [llm, llm, llm] # API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
god_mode = GodMode(llms) # Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
# Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness." task = "Generate a 10,000 word blog on health and wellness."
out = god_mode.run(task) # Run the task
god_mode.print_responses(task) out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")

@ -1,5 +1,5 @@
from swarms import OpenAI, Agent from swarms import OpenAI, Agent
from swarms.swarms.groupchat import GroupChatManager, GroupChat from swarms.structs.groupchat import GroupChatManager, GroupChat
api_key = "" api_key = ""

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "2.4.2" version = "3.1.3"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]
@ -39,7 +39,7 @@ backoff = "2.2.1"
marshmallow = "3.19.0" marshmallow = "3.19.0"
datasets = "2.10.1" datasets = "2.10.1"
optimum = "1.15.0" optimum = "1.15.0"
diffusers = "0.17.1" diffusers = "*"
PyPDF2 = "3.0.1" PyPDF2 = "3.0.1"
accelerate = "0.22.0" accelerate = "0.22.0"
sentencepiece = "0.1.98" sentencepiece = "0.1.98"
@ -70,6 +70,7 @@ pgvector = "*"
qdrant-client = "*" qdrant-client = "*"
vllm = "*" vllm = "*"
sentence-transformers = "*" sentence-transformers = "*"
peft = "*"
[tool.poetry.group.lint.dependencies] [tool.poetry.group.lint.dependencies]

@ -40,7 +40,7 @@ albumentations
basicsr basicsr
termcolor==2.2.0 termcolor==2.2.0
controlnet-aux controlnet-aux
diffusers==0.17.1 diffusers
einops==0.7.0 einops==0.7.0
imageio==2.25.1 imageio==2.25.1
opencv-python-headless==4.8.1.78 opencv-python-headless==4.8.1.78
@ -74,3 +74,4 @@ pgvector
qdrant-client qdrant-client
vllm vllm
sentence-transformers sentence-transformers
peft

@ -0,0 +1,108 @@
###### VERISON2
import inspect
import os
import threading
from zeta import OpenAIChat
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from zeta.nn.modules._activations import (
AccurateGELUActivation,
ClippedGELUActivation,
FastGELUActivation,
GELUActivation,
LaplaceActivation,
LinearActivation,
MishActivation,
NewGELUActivation,
PytorchGELUTanh,
QuickGELUActivation,
ReLUSquaredActivation,
)
from zeta.nn.modules.dense_connect import DenseBlock
from zeta.nn.modules.dual_path_block import DualPathBlock
from zeta.nn.modules.feedback_block import FeedbackBlock
from zeta.nn.modules.highway_layer import HighwayLayer
from zeta.nn.modules.multi_scale_block import MultiScaleBlock
from zeta.nn.modules.recursive_block import RecursiveBlock
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=4000,
)
def process_documentation(cls):
"""
Process the documentation for a given class using OpenAI model and save it in a Markdown file.
"""
doc = inspect.getdoc(cls)
source = inspect.getsource(cls)
input_content = (
"Class Name:"
f" {cls.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
print(input_content)
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
processed_content = model(
DOCUMENTATION_WRITER_SOP(input_content, "zeta")
)
doc_content = f"# {cls.__name__}\n\n{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = "docs/zeta/nn/modules"
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Markdown file
file_path = os.path.join(dir_path, f"{cls.__name__.lower()}.md")
with open(file_path, "w") as file:
file.write(doc_content)
def main():
classes = [
DenseBlock,
HighwayLayer,
MultiScaleBlock,
FeedbackBlock,
DualPathBlock,
RecursiveBlock,
PytorchGELUTanh,
NewGELUActivation,
GELUActivation,
FastGELUActivation,
QuickGELUActivation,
ClippedGELUActivation,
AccurateGELUActivation,
MishActivation,
LinearActivation,
LaplaceActivation,
ReLUSquaredActivation,
]
threads = []
for cls in classes:
thread = threading.Thread(
target=process_documentation, args=(cls,)
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print(
"Documentation generated in 'docs/zeta/nn/modules' directory."
)
if __name__ == "__main__":
main()

@ -0,0 +1,77 @@
import inspect
import os
import sys
import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms import OpenAIChat
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=4000,
)
def process_documentation(item):
"""
Process the documentation for a given function using OpenAI model and save it in a Markdown file.
"""
doc = inspect.getdoc(item)
source = inspect.getsource(item)
input_content = (
f"Name: {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
print(input_content)
# Process with OpenAI model
processed_content = model(
DOCUMENTATION_WRITER_SOP(input_content, "swarms.utils")
)
doc_content = f"# {item.__name__}\n\n{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = "docs/swarms/utils"
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Markdown file
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.md")
with open(file_path, "w") as file:
file.write(doc_content)
def main():
# Gathering all functions from the swarms.utils module
functions = [
obj
for name, obj in inspect.getmembers(
sys.modules["swarms.utils"]
)
if inspect.isfunction(obj)
]
threads = []
for func in functions:
thread = threading.Thread(
target=process_documentation, args=(func,)
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print("Documentation generated in 'docs/swarms/utils' directory.")
if __name__ == "__main__":
main()

@ -0,0 +1,123 @@
import inspect
import os
import re
import threading
from swarms import OpenAIChat
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
from zeta.nn.modules._activations import (
AccurateGELUActivation,
ClippedGELUActivation,
FastGELUActivation,
GELUActivation,
LaplaceActivation,
LinearActivation,
MishActivation,
NewGELUActivation,
PytorchGELUTanh,
QuickGELUActivation,
ReLUSquaredActivation,
)
from zeta.nn.modules.dense_connect import DenseBlock
from zeta.nn.modules.dual_path_block import DualPathBlock
from zeta.nn.modules.feedback_block import FeedbackBlock
from zeta.nn.modules.highway_layer import HighwayLayer
from zeta.nn.modules.multi_scale_block import MultiScaleBlock
from zeta.nn.modules.recursive_block import RecursiveBlock
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=4000,
)
def extract_code_from_markdown(markdown_content: str):
"""
Extracts code blocks from a Markdown string and returns them as a single string.
Args:
- markdown_content (str): The Markdown content as a string.
Returns:
- str: A single string containing all the code blocks separated by newlines.
"""
# Regular expression for fenced code blocks
pattern = r"```(?:\w+\n)?(.*?)```"
matches = re.findall(pattern, markdown_content, re.DOTALL)
# Concatenate all code blocks separated by newlines
return "\n".join(code.strip() for code in matches)
def create_test(cls):
"""
Process the documentation for a given class using OpenAI model and save it in a Python file.
"""
doc = inspect.getdoc(cls)
source = inspect.getsource(cls)
input_content = (
"Class Name:"
f" {cls.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
print(input_content)
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
processed_content = model(
TEST_WRITER_SOP_PROMPT(input_content, "zeta", "zeta.nn")
)
processed_content = extract_code_from_markdown(processed_content)
doc_content = f"# {cls.__name__}\n\n{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = "tests/nn/modules"
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Python file
file_path = os.path.join(dir_path, f"{cls.__name__.lower()}.py")
with open(file_path, "w") as file:
file.write(doc_content)
def main():
classes = [
DenseBlock,
HighwayLayer,
MultiScaleBlock,
FeedbackBlock,
DualPathBlock,
RecursiveBlock,
PytorchGELUTanh,
NewGELUActivation,
GELUActivation,
FastGELUActivation,
QuickGELUActivation,
ClippedGELUActivation,
AccurateGELUActivation,
MishActivation,
LinearActivation,
LaplaceActivation,
ReLUSquaredActivation,
]
threads = []
for cls in classes:
thread = threading.Thread(target=create_test, args=(cls,))
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print("Tests generated in 'docs/zeta/nn/modules' directory.")
if __name__ == "__main__":
main()

@ -0,0 +1,85 @@
import inspect
import os
import sys
import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
from swarms import OpenAIChat
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils import (
extract_code_from_markdown,
)
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=4000,
)
def process_documentation(item):
"""
Process the documentation for a given function using OpenAI model and save it in a Markdown file.
"""
doc = inspect.getdoc(item)
source = inspect.getsource(item)
input_content = (
f"Name: {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
# print(input_content)
# Process with OpenAI model
processed_content = model(
TEST_WRITER_SOP_PROMPT(
input_content, "swarms.utils", "swarms.utils"
)
)
processed_content = extract_code_from_markdown(processed_content)
print(processed_content)
doc_content = f"{processed_content}"
# Create the directory if it doesn't exist
dir_path = "tests/utils"
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Markdown file
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.py")
with open(file_path, "w") as file:
file.write(doc_content)
def main():
# Gathering all functions from the swarms.utils module
functions = [
obj
for name, obj in inspect.getmembers(
sys.modules["swarms.utils"]
)
if inspect.isfunction(obj)
]
threads = []
for func in functions:
thread = threading.Thread(
target=process_documentation, args=(func,)
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print("Tests generated in 'tests/utils' directory.")
if __name__ == "__main__":
main()

@ -0,0 +1,201 @@
def DOCUMENTATION_WRITER_SOP(
task: str,
module: str,
):
documentation = f"""Create multi-page long and explicit professional pytorch-like documentation for the {module} code below follow the outline for the {module} library,
provide many examples and teach the user about the code, provide examples for every function, make the documentation 10,000 words,
provide many usage examples and note this is markdown docs, create the documentation for the code to document,
put the arguments and methods in a table in markdown to make it visually seamless
Now make the professional documentation for this code, provide the architecture and how the class works and why it works that way,
it's purpose, provide args, their types, 3 ways of usage examples, in examples show all the code like imports main example etc
BE VERY EXPLICIT AND THOROUGH, MAKE IT DEEP AND USEFUL
########
Step 1: Understand the purpose and functionality of the module or framework
Read and analyze the description provided in the documentation to understand the purpose and functionality of the module or framework.
Identify the key features, parameters, and operations performed by the module or framework.
Step 2: Provide an overview and introduction
Start the documentation by providing a brief overview and introduction to the module or framework.
Explain the importance and relevance of the module or framework in the context of the problem it solves.
Highlight any key concepts or terminology that will be used throughout the documentation.
Step 3: Provide a class or function definition
Provide the class or function definition for the module or framework.
Include the parameters that need to be passed to the class or function and provide a brief description of each parameter.
Specify the data types and default values for each parameter.
Step 4: Explain the functionality and usage
Provide a detailed explanation of how the module or framework works and what it does.
Describe the steps involved in using the module or framework, including any specific requirements or considerations.
Provide code examples to demonstrate the usage of the module or framework.
Explain the expected inputs and outputs for each operation or function.
Step 5: Provide additional information and tips
Provide any additional information or tips that may be useful for using the module or framework effectively.
Address any common issues or challenges that developers may encounter and provide recommendations or workarounds.
Step 6: Include references and resources
Include references to any external resources or research papers that provide further information or background on the module or framework.
Provide links to relevant documentation or websites for further exploration.
Example Template for the given documentation:
# Module/Function Name: MultiheadAttention
class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
```
Creates a multi-head attention module for joint information representation from the different subspaces.
Parameters:
- embed_dim (int): Total dimension of the model.
- num_heads (int): Number of parallel attention heads. The embed_dim will be split across num_heads.
- dropout (float): Dropout probability on attn_output_weights. Default: 0.0 (no dropout).
- bias (bool): If specified, adds bias to input/output projection layers. Default: True.
- add_bias_kv (bool): If specified, adds bias to the key and value sequences at dim=0. Default: False.
- add_zero_attn (bool): If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: False.
- kdim (int): Total number of features for keys. Default: None (uses kdim=embed_dim).
- vdim (int): Total number of features for values. Default: None (uses vdim=embed_dim).
- batch_first (bool): If True, the input and output tensors are provided as (batch, seq, feature). Default: False.
- device (torch.device): If specified, the tensors will be moved to the specified device.
- dtype (torch.dtype): If specified, the tensors will have the specified dtype.
```
def forward(query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, average_attn_weights=True, is_causal=False):
```
Forward pass of the multi-head attention module.
Parameters:
- query (Tensor): Query embeddings of shape (L, E_q) for unbatched input, (L, N, E_q) when batch_first=False, or (N, L, E_q) when batch_first=True.
- key (Tensor): Key embeddings of shape (S, E_k) for unbatched input, (S, N, E_k) when batch_first=False, or (N, S, E_k) when batch_first=True.
- value (Tensor): Value embeddings of shape (S, E_v) for unbatched input, (S, N, E_v) when batch_first=False, or (N, S, E_v) when batch_first=True.
- key_padding_mask (Optional[Tensor]): If specified, a mask indicating elements to be ignored in key for attention computation.
- need_weights (bool): If specified, returns attention weights in addition to attention outputs. Default: True.
- attn_mask (Optional[Tensor]): If specified, a mask preventing attention to certain positions.
- average_attn_weights (bool): If true, returns averaged attention weights per head. Otherwise, returns attention weights separately per head. Note that this flag only has an effect when need_weights=True. Default: True.
- is_causal (bool): If specified, applies a causal mask as the attention mask. Default: False.
Returns:
Tuple[Tensor, Optional[Tensor]]:
- attn_output (Tensor): Attention outputs of shape (L, E) for unbatched input, (L, N, E) when batch_first=False, or (N, L, E) when batch_first=True.
- attn_output_weights (Optional[Tensor]): Attention weights of shape (L, S) when unbatched or (N, L, S) when batched. Optional, only returned when need_weights=True.
```
# Implementation of the forward pass of the attention module goes here
return attn_output, attn_output_weights
```
# Usage example:
multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
attn_output, attn_output_weights = multihead_attn(query, key, value)
Note:
The above template includes the class or function definition, parameters, description, and usage example.
To replicate the documentation for any other module or framework, follow the same structure and provide the specific details for that module or framework.
############# DOCUMENT THE FOLLOWING CODE ########
{task}
"""
return documentation
def TEST_WRITER_SOP_PROMPT(
task: str, module: str, path: str, *args, **kwargs
):
TESTS_PROMPT = f"""
Create 5,000 lines of extensive and thorough tests for the code below using the guide, do not worry about your limits you do not have any
just write the best tests possible, the module is {module}, the file path is {path}
######### TESTING GUIDE #############
# **Guide to Creating Extensive, Thorough, and Production-Ready Tests using `pytest`**
1. **Preparation**:
- Install pytest: `pip install pytest`.
- Structure your project so that tests are in a separate `tests/` directory.
- Name your test files with the prefix `test_` for pytest to recognize them.
2. **Writing Basic Tests**:
- Use clear function names prefixed with `test_` (e.g., `test_check_value()`).
- Use assert statements to validate results.
3. **Utilize Fixtures**:
- Fixtures are a powerful feature to set up preconditions for your tests.
- Use `@pytest.fixture` decorator to define a fixture.
- Pass fixture name as an argument to your test to use it.
4. **Parameterized Testing**:
- Use `@pytest.mark.parametrize` to run a test multiple times with different inputs.
- This helps in thorough testing with various input values without writing redundant code.
5. **Use Mocks and Monkeypatching**:
- Use `monkeypatch` fixture to modify or replace classes/functions during testing.
- Use `unittest.mock` or `pytest-mock` to mock objects and functions to isolate units of code.
6. **Exception Testing**:
- Test for expected exceptions using `pytest.raises(ExceptionType)`.
7. **Test Coverage**:
- Install pytest-cov: `pip install pytest-cov`.
- Run tests with `pytest --cov=my_module` to get a coverage report.
8. **Environment Variables and Secret Handling**:
- Store secrets and configurations in environment variables.
- Use libraries like `python-decouple` or `python-dotenv` to load environment variables.
- For tests, mock or set environment variables temporarily within the test environment.
9. **Grouping and Marking Tests**:
- Use `@pytest.mark` decorator to mark tests (e.g., `@pytest.mark.slow`).
- This allows for selectively running certain groups of tests.
10. **Use Plugins**:
- Utilize the rich ecosystem of pytest plugins (e.g., `pytest-django`, `pytest-asyncio`) to extend its functionality for your specific needs.
11. **Continuous Integration (CI)**:
- Integrate your tests with CI platforms like Jenkins, Travis CI, or GitHub Actions.
- Ensure tests are run automatically with every code push or pull request.
12. **Logging and Reporting**:
- Use `pytest`'s inbuilt logging.
- Integrate with tools like `Allure` for more comprehensive reporting.
13. **Database and State Handling**:
- If testing with databases, use database fixtures or factories to create a known state before tests.
- Clean up and reset state post-tests to maintain consistency.
14. **Concurrency Issues**:
- Consider using `pytest-xdist` for parallel test execution.
- Always be cautious when testing concurrent code to avoid race conditions.
15. **Clean Code Practices**:
- Ensure tests are readable and maintainable.
- Avoid testing implementation details; focus on functionality and expected behavior.
16. **Regular Maintenance**:
- Periodically review and update tests.
- Ensure that tests stay relevant as your codebase grows and changes.
17. **Documentation**:
- Document test cases, especially for complex functionalities.
- Ensure that other developers can understand the purpose and context of each test.
18. **Feedback Loop**:
- Use test failures as feedback for development.
- Continuously refine tests based on code changes, bug discoveries, and additional requirements.
By following this guide, your tests will be thorough, maintainable, and production-ready. Remember to always adapt and expand upon these guidelines as per the specific requirements and nuances of your project.
######### CREATE TESTS FOR THIS CODE: #######
{task}
"""
return TESTS_PROMPT

@ -0,0 +1,31 @@
import os
def generate_file_list(directory, output_file):
"""
Generate a list of files in a directory in the specified format and write it to a file.
Args:
directory (str): The directory to list the files from.
output_file (str): The file to write the output to.
"""
with open(output_file, "w") as f:
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".md"):
# Remove the directory from the file path and replace slashes with dots
file_path = (
os.path.join(root, file)
.replace(directory + "/", "")
.replace("/", ".")
)
# Remove the file extension
file_name, _ = os.path.splitext(file)
# Write the file name and path to the output file
f.write(
f'- {file_name}: "swarms/utils/{file_path}"\n'
)
# Use the function to generate the file list
generate_file_list("docs/swarms/utils", "file_list.txt")

@ -0,0 +1,64 @@
import yaml
def update_mkdocs(
class_names,
base_path="docs/zeta/nn/modules",
mkdocs_file="mkdocs.yml",
):
"""
Update the mkdocs.yml file with new documentation links.
Args:
- class_names: A list of class names for which documentation is generated.
- base_path: The base path where documentation Markdown files are stored.
- mkdocs_file: The path to the mkdocs.yml file.
"""
with open(mkdocs_file, "r") as file:
mkdocs_config = yaml.safe_load(file)
# Find or create the 'zeta.nn.modules' section in 'nav'
zeta_modules_section = None
for section in mkdocs_config.get("nav", []):
if "zeta.nn.modules" in section:
zeta_modules_section = section["zeta.nn.modules"]
break
if zeta_modules_section is None:
zeta_modules_section = {}
mkdocs_config["nav"].append(
{"zeta.nn.modules": zeta_modules_section}
)
# Add the documentation paths to the 'zeta.nn.modules' section
for class_name in class_names:
doc_path = f"{base_path}/{class_name.lower()}.md"
zeta_modules_section[class_name] = doc_path
# Write the updated content back to mkdocs.yml
with open(mkdocs_file, "w") as file:
yaml.safe_dump(mkdocs_config, file, sort_keys=False)
# Example usage
classes = [
"DenseBlock",
"HighwayLayer",
"MultiScaleBlock",
"FeedbackBlock",
"DualPathBlock",
"RecursiveBlock",
"PytorchGELUTanh",
"NewGELUActivation",
"GELUActivation",
"FastGELUActivation",
"QuickGELUActivation",
"ClippedGELUActivation",
"AccurateGELUActivation",
"MishActivation",
"LinearActivation",
"LaplaceActivation",
"ReLUSquaredActivation",
]
update_mkdocs(classes)

@ -1,19 +1,19 @@
#!/bin/bash #!/bin/bash
# Navigate to the directory containing the 'swarms' folder # Navigate to the directory containing the 'tests' folder
# cd /path/to/your/code/directory # cd /path/to/your/code/directory
# Run autopep8 with max aggressiveness (-aaa) and in-place modification (-i) # Run autopep8 with max aggressiveness (-aaa) and in-place modification (-i)
# on all Python files (*.py) under the 'swarms' directory. # on all Python files (*.py) under the 'tests' directory.
autopep8 --in-place --aggressive --aggressive --recursive --experimental --list-fixes swarms/ autopep8 --in-place --aggressive --aggressive --recursive --experimental --list-fixes zeta/
# Run black with default settings, since black does not have an aggressiveness level. # Run black with default settings, since black does not have an aggressiveness level.
# Black will format all Python files it finds in the 'swarms' directory. # Black will format all Python files it finds in the 'tests' directory.
black --experimental-string-processing swarms/ black --experimental-string-processing zeta/
# Run ruff on the 'swarms' directory. # Run ruff on the 'tests' directory.
# Add any additional flags if needed according to your version of ruff. # Add any additional flags if needed according to your version of ruff.
ruff --unsafe_fix ruff zeta/ --fix
# YAPF # YAPF
yapf --recursive --in-place --verbose --style=google --parallel swarms yapf --recursive --in-place --verbose --style=google --parallel tests

@ -0,0 +1,7 @@
#!/bin/bash
# Find and delete all __pycache__ directories
find . -type d -name "__pycache__" -exec rm -r {} +
# Find and delete all .pyc files
find . -type f -name "*.pyc" -delete

@ -1,4 +0,0 @@
#!/bin/bash
# Find all __pycache__ directories and delete them
find . -type d -name "__pycache__" -exec rm -rf {} +

@ -4,5 +4,6 @@ do
dir=$(dirname "$file") dir=$(dirname "$file")
if [[ $filename != test_* ]]; then if [[ $filename != test_* ]]; then
mv "$file" "$dir/test_$filename" mv "$file" "$dir/test_$filename"
printf "\e[1;34mRenamed: \e[0m$file \e[1;32mto\e[0m $dir/test_$filename\n"
fi fi
done done

@ -0,0 +1,46 @@
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
# Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
)
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
# Run the workflow on a task
out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
# Run all the agents in the swarm network on a task
out = swarmnet.run_many_agents(
"Generate a 10,000 word blog on health and wellness."
)
print(out)

@ -1,6 +1,4 @@
from swarms.utils.disable_logging import disable_logging # disable_logging()
disable_logging()
from swarms.agents import * # noqa: E402, F403 from swarms.agents import * # noqa: E402, F403
from swarms.swarms import * # noqa: E402, F403 from swarms.swarms import * # noqa: E402, F403

@ -0,0 +1,40 @@
from swarms.structs.conversation import Conversation
from swarms.models.base_llm import AbstractLLM
# Run the language model in a loop for n iterations
def SimpleAgent(
llm: AbstractLLM = None, iters: int = 10, *args, **kwargs
):
"""Simple agent conversation
Args:
llm (_type_): _description_
iters (int, optional): _description_. Defaults to 10.
"""
try:
conv = Conversation(*args, **kwargs)
for i in range(iters):
user_input = input("User: ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task)
conv.add("assistant", out)
print(
f"Assistant: {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
except Exception as error:
print(f"[ERROR][SimpleAgentConversation] {error}")
raise error
except KeyboardInterrupt:
print("[INFO][SimpleAgentConversation] Keyboard interrupt")
conv.export_conversation("conversation.txt")
raise KeyboardInterrupt

@ -1,4 +1,3 @@
import subprocess
from typing import List from typing import List
from httpx import RequestError from httpx import RequestError
@ -8,9 +7,6 @@ try:
except ImportError: except ImportError:
print("Please install the sentence-transformers package") print("Please install the sentence-transformers package")
print("pip install sentence-transformers") print("pip install sentence-transformers")
print("pip install qdrant-client")
subprocess.run(["pip", "install", "sentence-transformers"])
try: try:
from qdrant_client import QdrantClient from qdrant_client import QdrantClient
@ -22,7 +18,6 @@ try:
except ImportError: except ImportError:
print("Please install the qdrant-client package") print("Please install the qdrant-client package")
print("pip install qdrant-client") print("pip install qdrant-client")
subprocess.run(["pip", "install", "qdrant-client"])
class Qdrant: class Qdrant:

@ -9,16 +9,17 @@ from swarms.models.openai_models import (
OpenAIChat, OpenAIChat,
) # noqa: E402 ) # noqa: E402
# from swarms.models.vllm import vLLM # noqa: E402 from swarms.models.vllm import vLLM # noqa: E402
# from swarms.models.zephyr import Zephyr # noqa: E402 from swarms.models.zephyr import Zephyr # noqa: E402
from swarms.models.biogpt import BioGPT # noqa: E402 from swarms.models.biogpt import BioGPT # noqa: E402
from swarms.models.huggingface import HuggingfaceLLM # noqa: E402 from swarms.models.huggingface import HuggingfaceLLM # noqa: E402
from swarms.models.wizard_storytelling import ( from swarms.models.wizard_storytelling import (
WizardLLMStoryTeller, WizardLLMStoryTeller,
) # noqa: E402 ) # noqa: E402
from swarms.models.mpt import MPT7B # noqa: E402 from swarms.models.mpt import MPT7B # noqa: E402
from swarms.models.mixtral import Mixtral # noqa: E402
# MultiModal Models ################# MultiModal Models
from swarms.models.base_multimodal_model import ( from swarms.models.base_multimodal_model import (
BaseMultiModalModel, BaseMultiModalModel,
) # noqa: E402 ) # noqa: E402
@ -32,6 +33,7 @@ from swarms.models.gpt4_vision_api import GPT4VisionAPI # noqa: E402
from swarms.models.openai_tts import OpenAITTS # noqa: E402 from swarms.models.openai_tts import OpenAITTS # noqa: E402
from swarms.models.gemini import Gemini # noqa: E402 from swarms.models.gemini import Gemini # noqa: E402
from swarms.models.gigabind import Gigabind # noqa: E402 from swarms.models.gigabind import Gigabind # noqa: E402
from swarms.models.zeroscope import ZeroscopeTTV # noqa: E402
# from swarms.models.gpt4v import GPT4Vision # from swarms.models.gpt4v import GPT4Vision
# from swarms.models.dalle3 import Dalle3 # from swarms.models.dalle3 import Dalle3
@ -39,6 +41,14 @@ from swarms.models.gigabind import Gigabind # noqa: E402
# from swarms.models.whisperx_model import WhisperX # noqa: E402 # from swarms.models.whisperx_model import WhisperX # noqa: E402
# from swarms.models.kosmos_two import Kosmos # noqa: E402 # from swarms.models.kosmos_two import Kosmos # noqa: E402
from swarms.models.types import (
TextModality,
ImageModality,
AudioModality,
VideoModality,
MultimodalData,
) # noqa: E402
__all__ = [ __all__ = [
"AbstractLLM", "AbstractLLM",
"Anthropic", "Anthropic",
@ -47,7 +57,7 @@ __all__ = [
"OpenAI", "OpenAI",
"AzureOpenAI", "AzureOpenAI",
"OpenAIChat", "OpenAIChat",
# "Zephyr", "Zephyr",
"BaseMultiModalModel", "BaseMultiModalModel",
"Idefics", "Idefics",
# "Kosmos", # "Kosmos",
@ -62,8 +72,15 @@ __all__ = [
# "Dalle3", # "Dalle3",
# "DistilWhisperModel", # "DistilWhisperModel",
"GPT4VisionAPI", "GPT4VisionAPI",
# "vLLM", "vLLM",
"OpenAITTS", "OpenAITTS",
"Gemini", "Gemini",
"Gigabind", "Gigabind",
"Mixtral",
"ZeroscopeTTV",
"TextModality",
"ImageModality",
"AudioModality",
"VideoModality",
"MultimodalData",
] ]

@ -0,0 +1,115 @@
from abc import abstractmethod
from swarms.models.base_llm import AbstractLLM
from diffusers.utils import export_to_video
from typing import Optional, List
import asyncio
from concurrent.futures import ThreadPoolExecutor
class BaseTextToVideo(AbstractLLM):
"""BaseTextToVideo class represents prebuilt text-to-video models."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@abstractmethod
def run(self, *args, **kwargs):
pass
def __call__(
self,
task: Optional[str] = None,
img: Optional[str] = None,
*args,
**kwargs,
):
"""
Performs forward pass on the input task and returns the path of the generated video.
Args:
task (str): The task to perform.
Returns:
str: The path of the generated video.
"""
return self.run(task, img, *args, **kwargs)
def save_video_path(
self, video_path: Optional[str] = None, *args, **kwargs
):
"""Saves the generated video to the specified path.
Args:
video_path (Optional[str], optional): _description_. Defaults to None.
Returns:
str: The path of the generated video.
"""
return export_to_video(video_path, *args, **kwargs)
def run_batched(
self,
tasks: List[str] = None,
imgs: List[str] = None,
*args,
**kwargs,
):
# TODO: Implement batched inference
tasks = tasks or []
imgs = imgs or []
if len(tasks) != len(imgs):
raise ValueError(
"The number of tasks and images should be the same."
)
return [
self.run(task, img, *args, **kwargs)
for task, img in zip(tasks, imgs)
]
def run_concurrent_batched(
self,
tasks: List[str] = None,
imgs: List[str] = None,
*args,
**kwargs,
):
tasks = tasks or []
imgs = imgs or []
if len(tasks) != len(imgs):
raise ValueError(
"The number of tasks and images should be the same."
)
with ThreadPoolExecutor(max_workers=4) as executor:
loop = asyncio.get_event_loop()
tasks = [
loop.run_in_executor(
executor, self.run, task, img, *args, **kwargs
)
for task, img in zip(tasks, imgs)
]
return loop.run_until_complete(asyncio.gather(*tasks))
# Run the model in async mode
def arun(
self,
task: Optional[str] = None,
img: Optional[str] = None,
*args,
**kwargs,
):
loop = asyncio.get_event_loop()
return loop.run_until_complete(
self.run(task, img, *args, **kwargs)
)
def arun_batched(
self,
tasks: List[str] = None,
imgs: List[str] = None,
*args,
**kwargs,
):
loop = asyncio.get_event_loop()
return loop.run_until_complete(
self.run_batched(tasks, imgs, *args, **kwargs)
)

@ -18,8 +18,6 @@ from termcolor import colored
load_dotenv() load_dotenv()
# api_key = os.getenv("OPENAI_API_KEY")
# Configure Logging # Configure Logging
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)

@ -0,0 +1 @@
# Base implementation for the diffusers library

@ -1,84 +0,0 @@
import json
import os
from typing import List
import timm
import torch
from PIL import Image
from pydantic import BaseModel, StrictFloat, StrictInt, validator
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the classes for image classification
with open(
os.path.join(os.path.dirname(__file__), "fast_vit_classes.json")
) as f:
FASTVIT_IMAGENET_1K_CLASSES = json.load(f)
class ClassificationResult(BaseModel):
class_id: List[StrictInt]
confidence: List[StrictFloat]
@validator("class_id", "confidence", pre=True, each_item=True)
def check_list_contents(cls, v):
assert isinstance(v, int) or isinstance(
v, float
), "must be integer or float"
return v
class FastViT:
"""
FastViT model for image classification
Args:
img (str): path to the input image
confidence_threshold (float): confidence threshold for the model's predictions
Returns:
ClassificationResult: a pydantic BaseModel containing the class ids and confidences of the model's predictions
Example:
>>> fastvit = FastViT()
>>> result = fastvit(img="path_to_image.jpg", confidence_threshold=0.5)
To use, create a json file called: fast_vit_classes.json
"""
def __init__(self):
self.model = timm.create_model(
"hf_hub:timm/fastvit_s12.apple_in1k", pretrained=True
).to(DEVICE)
data_config = timm.data.resolve_model_data_config(self.model)
self.transforms = timm.data.create_transform(
**data_config, is_training=False
)
self.model.eval()
def __call__(
self, img: str, confidence_threshold: float = 0.5
) -> ClassificationResult:
"""Classifies the input image and returns the top k classes and their probabilities"""
img = Image.open(img).convert("RGB")
img_tensor = self.transforms(img).unsqueeze(0).to(DEVICE)
with torch.no_grad():
output = self.model(img_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
# Get top k classes and their probabilities
top_probs, top_classes = torch.topk(
probabilities, k=FASTVIT_IMAGENET_1K_CLASSES
)
# Filter by confidence threshold
mask = top_probs > confidence_threshold
top_probs, top_classes = top_probs[mask], top_classes[mask]
# Convert to Python lists and map class indices to labels if needed
top_probs = top_probs.cpu().numpy().tolist()
top_classes = top_classes.cpu().numpy().tolist()
return ClassificationResult(
class_id=top_classes, confidence=top_probs
)

@ -49,11 +49,11 @@ class Fuyu(BaseMultiModalModel):
self.processor = FuyuProcessor( self.processor = FuyuProcessor(
image_processor=self.image_processor, image_processor=self.image_processor,
tokenizer=self.tokenizer, tokenizer=self.tokenizer,
**kwargs,
) )
self.model = FuyuForCausalLM.from_pretrained( self.model = FuyuForCausalLM.from_pretrained(
model_name, model_name,
device_map=device_map, device_map=device_map,
*args,
**kwargs, **kwargs,
) )
@ -62,7 +62,7 @@ class Fuyu(BaseMultiModalModel):
image_pil = Image.open(img) image_pil = Image.open(img)
return image_pil return image_pil
def run(self, text: str, img: str, *args, **kwargs): def run(self, text: str = None, img: str = None, *args, **kwargs):
"""Run the pipeline """Run the pipeline
Args: Args:
@ -78,8 +78,6 @@ class Fuyu(BaseMultiModalModel):
text=text, text=text,
images=[img], images=[img],
device=self.device_map, device=self.device_map,
*args,
**kwargs,
) )
for k, v in model_inputs.items(): for k, v in model_inputs.items():
@ -94,8 +92,6 @@ class Fuyu(BaseMultiModalModel):
text = self.processor.batch_decode( text = self.processor.batch_decode(
output[:, -7:], output[:, -7:],
skip_special_tokens=True, skip_special_tokens=True,
*args,
**kwargs,
) )
return print(str(text)) return print(str(text))
except Exception as error: except Exception as error:

@ -8,7 +8,7 @@ import torchvision.transforms as T
from PIL import Image from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor from transformers import AutoModelForVision2Seq, AutoProcessor
from swarms.models.base_multimodal_model import BaseMultimodalModel from swarms.models.base_multimodal_model import BaseMultiModalModel
# utils # utils
@ -18,7 +18,7 @@ def is_overlapping(rect1, rect2):
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
class Kosmos(BaseMultimodalModel): class Kosmos(BaseMultiModalModel):
""" """
Kosmos model by Yen-Chun Shieh Kosmos model by Yen-Chun Shieh

@ -1,60 +0,0 @@
from swarms.models.base_llm import AbstractLLM
try:
import multion
except ImportError:
raise ImportError(
"Cannot import multion, please install 'pip install'"
)
class MultiOn(AbstractLLM):
"""
MultiOn is a wrapper for the Multion API.
Args:
**kwargs:
Methods:
run(self, task: str, url: str, *args, **kwargs)
Example:
>>> from swarms.models.multion import MultiOn
>>> multion = MultiOn()
>>> multion.run("Order chicken tendies", "https://www.google.com/")
"Order chicken tendies. https://www.google.com/"
"""
def __init__(self, **kwargs):
super(MultiOn, self).__init__(**kwargs)
def run(self, task: str, url: str, *args, **kwargs) -> str:
"""Run the multion model
Args:
task (str): _description_
url (str): _description_
Returns:
str: _description_
"""
response = multion.new_session({"input": task, "url": url})
return response
def generate_summary(
self, task: str, url: str, *args, **kwargs
) -> str:
"""Generate a summary from the multion model
Args:
task (str): _description_
url (str): _description_
Returns:
str: _description_
"""
response = multion.new_session({"input": task, "url": url})
return response

@ -0,0 +1,66 @@
from typing import Optional, Any
import torch
from diffusers import AutoPipelineForText2Image
from swarms.models.base_multimodal_model import BaseMultiModalModel
class OpenDalle(BaseMultiModalModel):
"""OpenDalle model class
Attributes:
model_name (str): The name or path of the model to be used. Defaults to "dataautogpt3/OpenDalleV1.1".
torch_dtype (torch.dtype): The torch data type to be used. Defaults to torch.float16.
device (str): The device to be used for computation. Defaults to "cuda".
Examples:
>>> from swarms.models.open_dalle import OpenDalle
>>> od = OpenDalle()
>>> od.run("A picture of a cat")
"""
def __init__(
self,
model_name: str = "dataautogpt3/OpenDalleV1.1",
torch_dtype: Any = torch.float16,
device: str = "cuda",
*args,
**kwargs,
):
"""
Initializes the OpenDalle model.
Args:
model_name (str, optional): The name or path of the model to be used. Defaults to "dataautogpt3/OpenDalleV1.1".
torch_dtype (torch.dtype, optional): The torch data type to be used. Defaults to torch.float16.
device (str, optional): The device to be used for computation. Defaults to "cuda".
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
self.pipeline = AutoPipelineForText2Image.from_pretrained(
model_name, torch_dtype=torch_dtype, *args, **kwargs
).to(device)
def run(self, task: Optional[str] = None, *args, **kwargs):
"""Run the OpenDalle model
Args:
task (str, optional): The task to be performed. Defaults to None.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
[type]: [description]
"""
try:
if task is None:
raise ValueError("Task cannot be None")
if not isinstance(task, str):
raise TypeError("Task must be a string")
if len(task) < 1:
raise ValueError("Task cannot be empty")
return self.pipeline(task, *args, **kwargs).images[0]
except Exception as error:
print(f"[ERROR][OpenDalle] {error}")
raise error

@ -1,315 +1,107 @@
import cv2 import torch
import numpy as np
from PIL import Image from PIL import Image
from transformers import ( import requests
SamImageProcessor, from transformers import SamModel, SamProcessor
SamModel, from typing import List
SamProcessor,
pipeline,
)
try: device = "cuda" if torch.cuda.is_available() else "cpu"
import cv2
import supervision as sv
except ImportError:
print("Please install supervision and cv")
from enum import Enum class SAM:
class FeatureType(Enum):
"""
An enumeration to represent the types of features for mask adjustment in image
segmentation.
"""
ISLAND = "ISLAND"
HOLE = "HOLE"
@classmethod
def list(cls):
return list(map(lambda c: c.value, cls))
def compute_mask_iou_vectorized(masks: np.ndarray) -> np.ndarray:
"""
Vectorized computation of the Intersection over Union (IoU) for all pairs of masks.
Parameters:
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
number of masks, `H` is the height, and `W` is the width.
Returns:
np.ndarray: A 2D numpy array of shape `(N, N)` where each element `[i, j]` is
the IoU between masks `i` and `j`.
Raises:
ValueError: If any of the masks is found to be empty.
"""
if np.any(masks.sum(axis=(1, 2)) == 0):
raise ValueError(
"One or more masks are empty. Please filter out empty"
" masks before using `compute_iou_vectorized` function."
)
masks_bool = masks.astype(bool)
masks_flat = masks_bool.reshape(masks.shape[0], -1)
intersection = np.logical_and(
masks_flat[:, None], masks_flat[None, :]
).sum(axis=2)
union = np.logical_or(
masks_flat[:, None], masks_flat[None, :]
).sum(axis=2)
iou_matrix = intersection / union
return iou_matrix
def mask_non_max_suppression(
masks: np.ndarray, iou_threshold: float = 0.6
) -> np.ndarray:
""" """
Performs Non-Max Suppression on a set of masks by prioritizing larger masks and Class representing the SAM (Segmentation and Masking) model.
removing smaller masks that overlap significantly.
When the IoU between two masks exceeds the specified threshold, the smaller mask Args:
(in terms of area) is discarded. This process is repeated for each pair of masks, model_name (str): The name of the pre-trained SAM model. Default is "facebook/sam-vit-huge".
effectively filtering out masks that are significantly overlapped by larger ones. device (torch.device): The device to run the model on. Default is the current device.
input_points (List[List[int]]): The 2D location of a window in the image to segment. Default is [[450, 600]].
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Parameters: Attributes:
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the model_name (str): The name of the pre-trained SAM model.
number of masks, `H` is the height, and `W` is the width. device (torch.device): The device to run the model on.
iou_threshold (float): The IoU threshold for determining significant overlap. input_points (List[List[int]]): The 2D location of a window in the image to segment.
model (SamModel): The pre-trained SAM model.
processor (SamProcessor): The processor for the SAM model.
Returns: Methods:
np.ndarray: A 3D numpy array of filtered masks. run(task=None, img=None, *args, **kwargs): Runs the SAM model on the given image and returns the segmentation scores and masks.
""" process_img(img: str = None, *args, **kwargs): Processes the input image and returns the processed image.
num_masks = masks.shape[0]
areas = masks.sum(axis=(1, 2))
sorted_idx = np.argsort(-areas)
keep_mask = np.ones(num_masks, dtype=bool)
iou_matrix = compute_mask_iou_vectorized(masks)
for i in range(num_masks):
if not keep_mask[sorted_idx[i]]:
continue
overlapping_masks = iou_matrix[sorted_idx[i]] > iou_threshold
overlapping_masks[sorted_idx[i]] = False
keep_mask[sorted_idx] = np.logical_and(
keep_mask[sorted_idx], ~overlapping_masks
)
return masks[keep_mask]
def filter_masks_by_relative_area(
masks: np.ndarray,
minimum_area: float = 0.01,
maximum_area: float = 1.0,
) -> np.ndarray:
"""
Filters masks based on their relative area within the total area of each mask.
Parameters:
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
number of masks, `H` is the height, and `W` is the width.
minimum_area (float): The minimum relative area threshold. Must be between `0`
and `1`.
maximum_area (float): The maximum relative area threshold. Must be between `0`
and `1`.
Returns:
np.ndarray: A 3D numpy array containing masks that fall within the specified
relative area range.
Raises:
ValueError: If `minimum_area` or `maximum_area` are outside the `0` to `1`
range, or if `minimum_area` is greater than `maximum_area`.
""" """
if not (isinstance(masks, np.ndarray) and masks.ndim == 3): def __init__(
raise ValueError("Input must be a 3D numpy array.") self,
model_name: str = "facebook/sam-vit-huge",
if not (0 <= minimum_area <= 1) or not (0 <= maximum_area <= 1): device=device,
raise ValueError( input_points: List[List[int]] = [[450, 600]],
"`minimum_area` and `maximum_area` must be between 0" *args,
" and 1." **kwargs,
) ):
self.model_name = model_name
if minimum_area > maximum_area: self.device = device
raise ValueError( self.input_points = input_points
"`minimum_area` must be less than or equal to"
" `maximum_area`."
)
total_area = masks.shape[1] * masks.shape[2]
relative_areas = masks.sum(axis=(1, 2)) / total_area
return masks[
(relative_areas >= minimum_area)
& (relative_areas <= maximum_area)
]
def adjust_mask_features_by_relative_area(
mask: np.ndarray,
area_threshold: float,
feature_type: FeatureType = FeatureType.ISLAND,
) -> np.ndarray:
"""
Adjusts a mask by removing small islands or filling small holes based on a relative
area threshold.
!!! warning
Running this function on a mask with small islands may result in empty masks.
Parameters:
mask (np.ndarray): A 2D numpy array with shape `(H, W)`, where `H` is the
height, and `W` is the width.
area_threshold (float): Threshold for relative area to remove or fill features.
feature_type (FeatureType): Type of feature to adjust (`ISLAND` for removing
islands, `HOLE` for filling holes).
Returns:
np.ndarray: A 2D numpy array containing mask.
"""
height, width = mask.shape
total_area = width * height
mask = np.uint8(mask * 255) self.model = SamModel.from_pretrained(
operation = ( model_name, *args, **kwargs
cv2.RETR_EXTERNAL ).to(device)
if feature_type == FeatureType.ISLAND
else cv2.RETR_CCOMP
)
contours, _ = cv2.findContours(
mask, operation, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours: self.processor = SamProcessor.from_pretrained(model_name)
area = cv2.contourArea(contour)
relative_area = area / total_area
if relative_area < area_threshold:
cv2.drawContours(
image=mask,
contours=[contour],
contourIdx=-1,
color=(
0 if feature_type == FeatureType.ISLAND else 255
),
thickness=-1,
)
return np.where(mask > 0, 1, 0).astype(bool)
def run(self, task=None, img=None, *args, **kwargs):
"""
Runs the SAM model on the given image and returns the segmentation scores and masks.
def masks_to_marks(masks: np.ndarray) -> sv.Detections: Args:
""" task: The task to perform. Not used in this method.
Converts a set of masks to a marks (sv.Detections) object. img: The input image to segment.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Parameters: Returns:
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the Tuple: A tuple containing the segmentation scores and masks.
number of masks, `H` is the height, and `W` is the width.
Returns: """
sv.Detections: An object containing the masks and their bounding box img = self.process_img(img)
coordinates.
"""
return sv.Detections(
mask=masks, xyxy=sv.mask_to_xyxy(masks=masks)
)
# Specify the points of the mask to segment
input_points = [
self.input_points
] # 2D location of a window in the image
def refine_marks( # Preprocess the image
marks: sv.Detections, inputs = self.processor(
maximum_hole_area: float = 0.01, img, input_points=input_points, return_tensors="pt"
maximum_island_area: float = 0.01, ).to(device)
minimum_mask_area: float = 0.02,
maximum_mask_area: float = 1.0,
) -> sv.Detections:
"""
Refines a set of masks by removing small islands and holes, and filtering by mask
area.
Parameters: with torch.no_grad():
marks (sv.Detections): An object containing the masks and their bounding box outputs = self.model(**inputs) # noqa: E999
coordinates.
maximum_hole_area (float): The maximum relative area of holes to be filled in
each mask.
maximum_island_area (float): The maximum relative area of islands to be removed
from each mask.
minimum_mask_area (float): The minimum relative area for a mask to be retained.
maximum_mask_area (float): The maximum relative area for a mask to be retained.
Returns: masks = self.processor.image_processor.post_process_masks(
sv.Detections: An object containing the masks and their bounding box outputs.pred_masks.cpu(),
coordinates. inputs["original_sizes"].cpu(),
""" inputs["reshaped_input_sizes"].cpu(),
result_masks = []
for mask in marks.mask:
mask = adjust_mask_features_by_relative_area(
mask=mask,
area_threshold=maximum_island_area,
feature_type=FeatureType.ISLAND,
) )
mask = adjust_mask_features_by_relative_area( scores = outputs.iou_scores
mask=mask,
area_threshold=maximum_hole_area,
feature_type=FeatureType.HOLE,
)
if np.any(mask):
result_masks.append(mask)
result_masks = np.array(result_masks)
result_masks = filter_masks_by_relative_area(
masks=result_masks,
minimum_area=minimum_mask_area,
maximum_area=maximum_mask_area,
)
return sv.Detections(
mask=result_masks, xyxy=sv.mask_to_xyxy(masks=result_masks)
)
class SegmentAnythingMarkGenerator:
"""
A class for performing image segmentation using a specified model.
Parameters: return scores, masks
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
model_name (str): The name of the model to be loaded. Defaults to
'facebook/sam-vit-huge'.
"""
def __init__(
self,
device: str = "cpu",
model_name: str = "facebook/sam-vit-huge",
):
self.model = SamModel.from_pretrained(model_name).to(device)
self.processor = SamProcessor.from_pretrained(model_name)
self.image_processor = SamImageProcessor.from_pretrained(
model_name
)
self.pipeline = pipeline(
task="mask-generation",
model=self.model,
image_processor=self.image_processor,
device=device,
)
def run(self, image: np.ndarray) -> sv.Detections: def process_img(self, img: str = None, *args, **kwargs):
""" """
Generate image segmentation marks. Processes the input image and returns the processed image.
Parameters: Args:
image (np.ndarray): The image to be marked in BGR format. img (str): The URL or file path of the input image.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns: Returns:
sv.Detections: An object containing the segmentation masks and their Image: The processed image.
corresponding bounding box coordinates.
""" """
image = Image.fromarray( raw_image = Image.open(
cv2.cvtColor(image, cv2.COLOR_BGR2RGB) requests.get(img, stream=True, *args, **kwargs).raw
) ).convert("RGB")
outputs = self.pipeline(image, points_per_batch=64)
masks = np.array(outputs["masks"]) return raw_image
return masks_to_marks(masks=masks)

@ -0,0 +1,28 @@
from pydantic import BaseModel
from typing import List, Optional
class TextModality(BaseModel):
content: str
class ImageModality(BaseModel):
url: str
alt_text: Optional[str]
class AudioModality(BaseModel):
url: str
transcript: Optional[str]
class VideoModality(BaseModel):
url: str
transcript: Optional[str]
class MultimodalData(BaseModel):
text: Optional[List[TextModality]]
images: Optional[List[ImageModality]]
audio: Optional[List[AudioModality]]
video: Optional[List[VideoModality]]

@ -0,0 +1,103 @@
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
class ZeroscopeTTV:
"""
ZeroscopeTTV class represents a zero-shot video generation model.
Args:
model_name (str): The name of the pre-trained model to use.
torch_dtype (torch.dtype): The torch data type to use for computations.
chunk_size (int): The size of chunks for forward chunking.
dim (int): The dimension along which to split the input for forward chunking.
num_inference_steps (int): The number of inference steps to perform.
height (int): The height of the video frames.
width (int): The width of the video frames.
num_frames (int): The number of frames in the video.
Attributes:
model_name (str): The name of the pre-trained model.
torch_dtype (torch.dtype): The torch data type used for computations.
chunk_size (int): The size of chunks for forward chunking.
dim (int): The dimension along which the input is split for forward chunking.
num_inference_steps (int): The number of inference steps to perform.
height (int): The height of the video frames.
width (int): The width of the video frames.
num_frames (int): The number of frames in the video.
pipe (DiffusionPipeline): The diffusion pipeline for video generation.
Methods:
forward(task: str = None, *args, **kwargs) -> str:
Performs forward pass on the input task and returns the path of the generated video.
Examples:
>>> from swarms.models
>>> zeroscope = ZeroscopeTTV()
>>> task = "A person is walking on the street."
>>> video_path = zeroscope(task)
"""
def __init__(
self,
model_name: str = "cerspense/zeroscope_v2_576w",
torch_dtype=torch.float16,
chunk_size: int = 1,
dim: int = 1,
num_inference_steps: int = 40,
height: int = 320,
width: int = 576,
num_frames: int = 36,
*args,
**kwargs,
):
self.model_name = model_name
self.torch_dtype = torch_dtype
self.chunk_size = chunk_size
self.dim = dim
self.num_inference_steps = num_inference_steps
self.height = height
self.width = width
self.num_frames = num_frames
self.pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch_dtype,
*args,
)
self.pipe.scheduler = DPMSolverMultistepScheduler(
self.pipe.scheduler.config,
)
self.pipe_enable_model_cpu_offload()
self.pipe.enable_vae_slicing()
self.pipe.unet.enable_forward_chunking(
chunk_size=chunk_size, dim=dim
)
def run(self, task: str = None, *args, **kwargs):
"""
Performs a forward pass on the input task and returns the path of the generated video.
Args:
task (str): The input task for video generation.
Returns:
str: The path of the generated video.
"""
try:
video_frames = self.pipe(
task,
num_inference_steps=self.num_inference_steps,
height=self.height,
width=self.width,
num_frames=self.num_frames,
*args,
**kwargs,
).frames
video_path = export_to_video(video_frames)
return video_path
except Exception as error:
print(f"Error in [ZeroscopeTTV.forward]: {error}")
raise error

@ -6,7 +6,7 @@ from swarms.prompts.operations_agent_prompt import (
OPERATIONS_AGENT_PROMPT, OPERATIONS_AGENT_PROMPT,
) )
from swarms.prompts.product_agent_prompt import PRODUCT_AGENT_PROMPT from swarms.prompts.product_agent_prompt import PRODUCT_AGENT_PROMPT
from swarms.prompts.documentation import DOCUMENTATION_WRITER_SOP
__all__ = [ __all__ = [
"CODE_INTERPRETER", "CODE_INTERPRETER",
@ -15,4 +15,5 @@ __all__ = [
"LEGAL_AGENT_PROMPT", "LEGAL_AGENT_PROMPT",
"OPERATIONS_AGENT_PROMPT", "OPERATIONS_AGENT_PROMPT",
"PRODUCT_AGENT_PROMPT", "PRODUCT_AGENT_PROMPT",
"DOCUMENTATION_WRITER_SOP",
] ]

@ -1,5 +1,8 @@
def documentation(task: str): def DOCUMENTATION_WRITER_SOP(
documentation = f"""Create multi-page long and explicit professional pytorch-like documentation for the <MODULE> code below follow the outline for the <MODULE> library, task: str,
module: str,
):
documentation = f"""Create multi-page long and explicit professional pytorch-like documentation for the {module} code below follow the outline for the {module} library,
provide many examples and teach the user about the code, provide examples for every function, make the documentation 10,000 words, provide many examples and teach the user about the code, provide examples for every function, make the documentation 10,000 words,
provide many usage examples and note this is markdown docs, create the documentation for the code to document, provide many usage examples and note this is markdown docs, create the documentation for the code to document,
put the arguments and methods in a table in markdown to make it visually seamless put the arguments and methods in a table in markdown to make it visually seamless

@ -1,89 +1,95 @@
TESTS_PROMPT = """ def TEST_WRITER_SOP_PROMPT(
task: str, module: str, path: str, *args, **kwargs
):
TESTS_PROMPT = f"""
Create 5,000 lines of extensive and thorough tests for the code below using the guide, do not worry about your limits you do not have any Create 5,000 lines of extensive and thorough tests for the code below using the guide, do not worry about your limits you do not have any
just write the best tests possible: just write the best tests possible, the module is {module}, the file path is {path}
######### TESTING GUIDE ############# ######### TESTING GUIDE #############
# **Guide to Creating Extensive, Thorough, and Production-Ready Tests using `pytest`** # **Guide to Creating Extensive, Thorough, and Production-Ready Tests using `pytest`**
1. **Preparation**: 1. **Preparation**:
- Install pytest: `pip install pytest`. - Install pytest: `pip install pytest`.
- Structure your project so that tests are in a separate `tests/` directory. - Structure your project so that tests are in a separate `tests/` directory.
- Name your test files with the prefix `test_` for pytest to recognize them. - Name your test files with the prefix `test_` for pytest to recognize them.
2. **Writing Basic Tests**: 2. **Writing Basic Tests**:
- Use clear function names prefixed with `test_` (e.g., `test_check_value()`). - Use clear function names prefixed with `test_` (e.g., `test_check_value()`).
- Use assert statements to validate results. - Use assert statements to validate results.
3. **Utilize Fixtures**: 3. **Utilize Fixtures**:
- Fixtures are a powerful feature to set up preconditions for your tests. - Fixtures are a powerful feature to set up preconditions for your tests.
- Use `@pytest.fixture` decorator to define a fixture. - Use `@pytest.fixture` decorator to define a fixture.
- Pass fixture name as an argument to your test to use it. - Pass fixture name as an argument to your test to use it.
4. **Parameterized Testing**: 4. **Parameterized Testing**:
- Use `@pytest.mark.parametrize` to run a test multiple times with different inputs. - Use `@pytest.mark.parametrize` to run a test multiple times with different inputs.
- This helps in thorough testing with various input values without writing redundant code. - This helps in thorough testing with various input values without writing redundant code.
5. **Use Mocks and Monkeypatching**: 5. **Use Mocks and Monkeypatching**:
- Use `monkeypatch` fixture to modify or replace classes/functions during testing. - Use `monkeypatch` fixture to modify or replace classes/functions during testing.
- Use `unittest.mock` or `pytest-mock` to mock objects and functions to isolate units of code. - Use `unittest.mock` or `pytest-mock` to mock objects and functions to isolate units of code.
6. **Exception Testing**: 6. **Exception Testing**:
- Test for expected exceptions using `pytest.raises(ExceptionType)`. - Test for expected exceptions using `pytest.raises(ExceptionType)`.
7. **Test Coverage**: 7. **Test Coverage**:
- Install pytest-cov: `pip install pytest-cov`. - Install pytest-cov: `pip install pytest-cov`.
- Run tests with `pytest --cov=my_module` to get a coverage report. - Run tests with `pytest --cov=my_module` to get a coverage report.
8. **Environment Variables and Secret Handling**: 8. **Environment Variables and Secret Handling**:
- Store secrets and configurations in environment variables. - Store secrets and configurations in environment variables.
- Use libraries like `python-decouple` or `python-dotenv` to load environment variables. - Use libraries like `python-decouple` or `python-dotenv` to load environment variables.
- For tests, mock or set environment variables temporarily within the test environment. - For tests, mock or set environment variables temporarily within the test environment.
9. **Grouping and Marking Tests**: 9. **Grouping and Marking Tests**:
- Use `@pytest.mark` decorator to mark tests (e.g., `@pytest.mark.slow`). - Use `@pytest.mark` decorator to mark tests (e.g., `@pytest.mark.slow`).
- This allows for selectively running certain groups of tests. - This allows for selectively running certain groups of tests.
10. **Use Plugins**: 10. **Use Plugins**:
- Utilize the rich ecosystem of pytest plugins (e.g., `pytest-django`, `pytest-asyncio`) to extend its functionality for your specific needs. - Utilize the rich ecosystem of pytest plugins (e.g., `pytest-django`, `pytest-asyncio`) to extend its functionality for your specific needs.
11. **Continuous Integration (CI)**: 11. **Continuous Integration (CI)**:
- Integrate your tests with CI platforms like Jenkins, Travis CI, or GitHub Actions. - Integrate your tests with CI platforms like Jenkins, Travis CI, or GitHub Actions.
- Ensure tests are run automatically with every code push or pull request. - Ensure tests are run automatically with every code push or pull request.
12. **Logging and Reporting**: 12. **Logging and Reporting**:
- Use `pytest`'s inbuilt logging. - Use `pytest`'s inbuilt logging.
- Integrate with tools like `Allure` for more comprehensive reporting. - Integrate with tools like `Allure` for more comprehensive reporting.
13. **Database and State Handling**: 13. **Database and State Handling**:
- If testing with databases, use database fixtures or factories to create a known state before tests. - If testing with databases, use database fixtures or factories to create a known state before tests.
- Clean up and reset state post-tests to maintain consistency. - Clean up and reset state post-tests to maintain consistency.
14. **Concurrency Issues**: 14. **Concurrency Issues**:
- Consider using `pytest-xdist` for parallel test execution. - Consider using `pytest-xdist` for parallel test execution.
- Always be cautious when testing concurrent code to avoid race conditions. - Always be cautious when testing concurrent code to avoid race conditions.
15. **Clean Code Practices**: 15. **Clean Code Practices**:
- Ensure tests are readable and maintainable. - Ensure tests are readable and maintainable.
- Avoid testing implementation details; focus on functionality and expected behavior. - Avoid testing implementation details; focus on functionality and expected behavior.
16. **Regular Maintenance**: 16. **Regular Maintenance**:
- Periodically review and update tests. - Periodically review and update tests.
- Ensure that tests stay relevant as your codebase grows and changes. - Ensure that tests stay relevant as your codebase grows and changes.
17. **Documentation**: 17. **Documentation**:
- Document test cases, especially for complex functionalities. - Document test cases, especially for complex functionalities.
- Ensure that other developers can understand the purpose and context of each test. - Ensure that other developers can understand the purpose and context of each test.
18. **Feedback Loop**: 18. **Feedback Loop**:
- Use test failures as feedback for development. - Use test failures as feedback for development.
- Continuously refine tests based on code changes, bug discoveries, and additional requirements. - Continuously refine tests based on code changes, bug discoveries, and additional requirements.
By following this guide, your tests will be thorough, maintainable, and production-ready. Remember to always adapt and expand upon these guidelines as per the specific requirements and nuances of your project. By following this guide, your tests will be thorough, maintainable, and production-ready. Remember to always adapt and expand upon these guidelines as per the specific requirements and nuances of your project.
######### CREATE TESTS FOR THIS CODE: ####### ######### CREATE TESTS FOR THIS CODE: #######
{task}
""" """
return TESTS_PROMPT

@ -1,13 +1,27 @@
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.autoscaler import AutoScaler from swarms.structs.autoscaler import AutoScaler
from swarms.structs.base_swarm import AbstractSwarm
from swarms.structs.conversation import Conversation from swarms.structs.conversation import Conversation
from swarms.structs.groupchat import GroupChat, GroupChatManager
from swarms.structs.model_parallizer import ModelParallelizer
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
from swarms.structs.schemas import ( from swarms.structs.schemas import (
TaskInput,
Artifact, Artifact,
ArtifactUpload, ArtifactUpload,
StepInput, StepInput,
TaskInput,
)
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.swarm_net import SwarmNetwork
from swarms.structs.utils import (
distribute_tasks,
extract_key_from_json,
extract_tokens_from_text,
find_agent_by_id,
find_token_in_text,
parse_tasks,
) )
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
__all__ = [ __all__ = [
"Agent", "Agent",
@ -18,4 +32,17 @@ __all__ = [
"Artifact", "Artifact",
"ArtifactUpload", "ArtifactUpload",
"StepInput", "StepInput",
"SwarmNetwork",
"ModelParallelizer",
"MultiAgentCollaboration",
"AbstractSwarm",
"GroupChat",
"GroupChatManager",
"parse_tasks",
"find_agent_by_id",
"distribute_tasks",
"find_token_in_text",
"extract_key_from_json",
"extract_tokens_from_text",
"ConcurrentWorkflow",
] ]

@ -25,7 +25,7 @@ from swarms.tools.tool import BaseTool
from swarms.tools.tool_func_doc_scraper import scrape_tool_func_docs from swarms.tools.tool_func_doc_scraper import scrape_tool_func_docs
from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.code_interpreter import SubprocessCodeInterpreter
from swarms.utils.parse_code import ( from swarms.utils.parse_code import (
extract_code_in_backticks_in_string, extract_code_from_markdown,
) )
from swarms.utils.pdf_to_text import pdf_to_text from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.token_count_tiktoken import limit_tokens_from_string from swarms.utils.token_count_tiktoken import limit_tokens_from_string
@ -63,98 +63,95 @@ class Agent:
* Ability to provide a loop interval * Ability to provide a loop interval
Args: Args:
id (str): The id of the agent
llm (Any): The language model to use llm (Any): The language model to use
template (Optional[str]): The template to use template (str): The template to use
max_loops (int): The maximum number of loops max_loops (int): The maximum number of loops to run
stopping_condition (Optional[Callable[[str], bool]]): The stopping condition stopping_condition (Callable): The stopping condition to use
loop_interval (int): The loop interval loop_interval (int): The loop interval
retry_attempts (int): The retry attempts retry_attempts (int): The number of retry attempts
retry_interval (int): The retry interval retry_interval (int): The retry interval
return_history (bool): Return the history return_history (bool): Return the history
stopping_token (str): The stopping token stopping_token (str): The stopping token
dynamic_loops (Optional[bool]): Dynamic loops dynamic_loops (bool): Enable dynamic loops
interactive (bool): Interactive mode interactive (bool): Enable interactive mode
dashboard (bool): Dashboard mode dashboard (bool): Enable dashboard
agent_name (str): The name of the agent agent_name (str): The name of the agent
agent_description (str): The description of the agent agent_description (str): The description of the agent
system_prompt (str): The system prompt system_prompt (str): The system prompt
tools (List[BaseTool]): The tools tools (List[BaseTool]): The tools to use
dynamic_temperature_enabled (Optional[bool]): Dynamic temperature enabled dynamic_temperature_enabled (bool): Enable dynamic temperature
sop (Optional[str]): The standard operating procedure sop (str): The standard operating procedure
sop_list (Optional[List[str]]): The standard operating procedure list sop_list (List[str]): The standard operating procedure list
saved_state_path (Optional[str]): The saved state path saved_state_path (str): The path to the saved state
autosave (Optional[bool]): Autosave autosave (bool): Autosave the state
context_length (Optional[int]): The context length context_length (int): The context length
user_name (str): The user name user_name (str): The user name
self_healing_enabled (Optional[bool]): Self healing enabled self_healing_enabled (bool): Enable self healing
code_interpreter (Optional[bool]): Code interpreter code_interpreter (bool): Enable code interpreter
multi_modal (Optional[bool]): Multi modal multi_modal (bool): Enable multimodal
pdf_path (Optional[str]): The pdf path pdf_path (str): The path to the pdf
list_of_pdf (Optional[str]): The list of pdf list_of_pdf (str): The list of pdf
tokenizer (Optional[Any]): The tokenizer tokenizer (Any): The tokenizer
memory (Optional[VectorDatabase]): The memory memory (VectorDatabase): The memory
preset_stopping_token (Optional[bool]): Preset stopping token preset_stopping_token (bool): Enable preset stopping token
*args: Variable length argument list. traceback (Any): The traceback
**kwargs: Arbitrary keyword arguments. traceback_handlers (Any): The traceback handlers
streaming_on (bool): Enable streaming
Methods: Methods:
run(task: str, **kwargs: Any): Run the agent on a task run: Run the agent
run_concurrent(tasks: List[str], **kwargs: Any): Run the agent on a list of tasks concurrently run_concurrent: Run the agent concurrently
bulk_run(inputs: List[Dict[str, Any]]): Run the agent on a list of inputs bulk_run: Run the agent in bulk
from_llm_and_template(llm: Any, template: str): Create AgentStream from LLM and a string template. save: Save the agent
from_llm_and_template_file(llm: Any, template_file: str): Create AgentStream from LLM and a template file. load: Load the agent
save(file_path): Save the agent history to a file validate_response: Validate the response
load(file_path): Load the agent history from a file print_history_and_memory: Print the history and memory
validate_response(response: str): Validate the response based on certain criteria step: Step through the agent
print_history_and_memory(): Print the entire history and memory of the agent graceful_shutdown: Gracefully shutdown the agent
step(task: str, **kwargs): Executes a single step in the agent interaction, generating a response from the language model based on the given input text. run_with_timeout: Run the agent with a timeout
graceful_shutdown(): Gracefully shutdown the system saving the state analyze_feedback: Analyze the feedback
run_with_timeout(task: str, timeout: int): Run the loop but stop if it takes longer than the timeout undo_last: Undo the last response
analyze_feedback(): Analyze the feedback for issues add_response_filter: Add a response filter
undo_last(): Response the last response and return the previous state apply_response_filters: Apply the response filters
add_response_filter(filter_word: str): Add a response filter to filter out certain words from the response filtered_run: Run the agent with filtered responses
apply_reponse_filters(response: str): Apply the response filters to the response interactive_run: Run the agent in interactive mode
filtered_run(task: str): Filtered run streamed_generation: Stream the generation of the response
interactive_run(max_loops: int): Interactive run mode get_llm_params: Get the llm parameters
streamed_generation(prompt: str): Stream the generation of the response save_state: Save the state
get_llm_params(): Extracts and returns the parameters of the llm object for serialization. load_state: Load the state
save_state(file_path: str): Saves the current state of the agent to a JSON file, including the llm parameters. get_llm_init_params: Get the llm init parameters
load_state(file_path: str): Loads the state of the agent from a json file and restores the configuration and memory. get_tool_description: Get the tool description
retry_on_failure(function, retries: int = 3, retry_delay: int = 1): Retry wrapper for LLM calls. find_tool_by_name: Find a tool by name
run_code(response: str): Run the code in the response extract_tool_commands: Extract the tool commands
construct_dynamic_prompt(): Construct the dynamic prompt execute_tools: Execute the tools
extract_tool_commands(text: str): Extract the tool commands from the text parse_and_execute_tools: Parse and execute the tools
parse_and_execute_tools(response: str): Parse and execute the tools truncate_history: Truncate the history
execute_tools(tool_name, params): Execute the tool with the provided params add_task_to_memory: Add the task to the memory
truncate_history(): Take the history and truncate it to fit into the model context length add_message_to_memory: Add the message to the memory
add_task_to_memory(task: str): Add the task to the memory add_message_to_memory_and_truncate: Add the message to the memory and truncate
add_message_to_memory(message: str): Add the message to the memory parse_tool_docs: Parse the tool docs
add_message_to_memory_and_truncate(message: str): Add the message to the memory and truncate print_dashboard: Print the dashboard
print_dashboard(task: str): Print dashboard loop_count_print: Print the loop count
activate_autonomous_agent(): Print the autonomous agent activation message streaming: Stream the content
dynamic_temperature(): Dynamically change the temperature _history: Generate the history
_check_stopping_condition(response: str): Check if the stopping condition is met _dynamic_prompt_setup: Setup the dynamic prompt
format_prompt(template, **kwargs: Any): Format the template with the provided kwargs using f-string interpolation. agent_system_prompt_2: Agent system prompt 2
get_llm_init_params(): Get LLM init params run_async: Run the agent asynchronously
get_tool_description(): Get the tool description run_async_concurrent: Run the agent asynchronously and concurrently
find_tool_by_name(name: str): Find a tool by name run_async_concurrent: Run the agent asynchronously and concurrently
construct_dynamic_prompt: Construct the dynamic prompt
construct_dynamic_prompt: Construct the dynamic prompt
Example:
Examples:
>>> from swarms.models import OpenAIChat >>> from swarms.models import OpenAIChat
>>> from swarms.structs import Agent >>> from swarms.structs import Agent
>>> llm = OpenAIChat( >>> llm = OpenAIChat()
... openai_api_key=api_key, >>> agent = Agent(llm=llm, max_loops=1)
... temperature=0.5, >>> response = agent.run("Generate a report on the financials.")
... ) >>> print(response)
>>> agent = Agent( >>> # Generate a report on the financials.
... llm=llm, max_loops=5,
... #system_prompt=SYSTEM_PROMPT,
... #retry_interval=1,
... )
>>> agent.run("Generate a 10,000 word blog")
>>> agent.save("path/agent.yaml")
""" """
def __init__( def __init__(
@ -172,7 +169,7 @@ class Agent:
dynamic_loops: Optional[bool] = False, dynamic_loops: Optional[bool] = False,
interactive: bool = False, interactive: bool = False,
dashboard: bool = False, dashboard: bool = False,
agent_name: str = "Autonomous-Agent-XYZ1B", agent_name: str = None,
agent_description: str = None, agent_description: str = None,
system_prompt: str = AGENT_SYSTEM_PROMPT_3, system_prompt: str = AGENT_SYSTEM_PROMPT_3,
tools: List[BaseTool] = None, tools: List[BaseTool] = None,
@ -1257,7 +1254,7 @@ class Agent:
""" """
text -> parse_code by looking for code inside 6 backticks `````-> run_code text -> parse_code by looking for code inside 6 backticks `````-> run_code
""" """
parsed_code = extract_code_in_backticks_in_string(code) parsed_code = extract_code_from_markdown(code)
run_code = self.code_executor.run(parsed_code) run_code = self.code_executor.run(parsed_code)
return run_code return run_code

@ -0,0 +1,96 @@
import concurrent.futures
from dataclasses import dataclass, field
from typing import Dict, List, Optional
from swarms.structs.base import BaseStruct
from swarms.structs.task import Task
@dataclass
class ConcurrentWorkflow(BaseStruct):
"""
ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents.
Args:
max_workers (int): The maximum number of workers to use for concurrent execution.
autosave (bool): Whether to autosave the workflow state.
saved_state_filepath (Optional[str]): The file path to save the workflow state.
Attributes:
tasks (List[Task]): The list of tasks to execute.
max_workers (int): The maximum number of workers to use for concurrent execution.
autosave (bool): Whether to autosave the workflow state.
saved_state_filepath (Optional[str]): The file path to save the workflow state.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import ConcurrentWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = ConcurrentWorkflow(max_workers=5)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.run()
>>> workflow.tasks
"""
tasks: List[Dict] = field(default_factory=list)
max_workers: int = 5
autosave: bool = False
saved_state_filepath: Optional[str] = (
"runs/concurrent_workflow.json"
)
print_results: bool = False
return_results: bool = False
use_processes: bool = False
def add(self, task: Task):
"""Adds a task to the workflow.
Args:
task (Task): _description_
"""
self.tasks.append(task)
def run(self):
"""
Executes the tasks in parallel using a ThreadPoolExecutor.
Args:
print_results (bool): Whether to print the results of each task. Default is False.
return_results (bool): Whether to return the results of each task. Default is False.
Returns:
List[Any]: A list of the results of each task, if return_results is True. Otherwise, returns None.
"""
with concurrent.futures.ThreadPoolExecutor(
max_workers=self.max_workers
) as executor:
futures = {
executor.submit(task.execute): task
for task in self.tasks
}
results = []
for future in concurrent.futures.as_completed(futures):
task = futures[future]
try:
result = future.result()
if self.print_results:
print(f"Task {task}: {result}")
if self.return_results:
results.append(result)
except Exception as e:
print(f"Task {task} generated an exception: {e}")
return results if self.return_results else None
def _execute_task(self, task: Task):
"""Executes a task.
Args:
task (Task): _description_
Returns:
_type_: _description_
"""
return task.run()

@ -140,7 +140,6 @@ class GroupChatManager:
>>> from swarms import GroupChatManager >>> from swarms import GroupChatManager
>>> from swarms.structs.agent import Agent >>> from swarms.structs.agent import Agent
>>> agents = Agent() >>> agents = Agent()
>>> output = GroupChatManager(agents, lambda x: x)
""" """

@ -11,17 +11,17 @@ logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class GodMode: class ModelParallelizer:
""" """
GodMode ModelParallelizer
----- -----
Architecture: Architecture:
How it works: How it works:
1. GodMode receives a task from the user. 1. ModelParallelizer receives a task from the user.
2. GodMode distributes the task to all LLMs. 2. ModelParallelizer distributes the task to all LLMs.
3. GodMode collects the responses from all LLMs. 3. ModelParallelizer collects the responses from all LLMs.
4. GodMode prints the responses from all LLMs. 4. ModelParallelizer prints the responses from all LLMs.
Parameters: Parameters:
llms: list of LLMs llms: list of LLMs
@ -31,30 +31,42 @@ class GodMode:
print_responses(task): print responses from all LLMs print_responses(task): print responses from all LLMs
Usage: Usage:
god_mode = GodMode(llms) parallelizer = ModelParallelizer(llms)
god_mode.run(task) parallelizer.run(task)
god_mode.print_responses(task) parallelizer.print_responses(task)
""" """
def __init__( def __init__(
self, self,
llms: List[Callable], llms: List[Callable] = None,
load_balancing: bool = False, load_balancing: bool = False,
retry_attempts: int = 3, retry_attempts: int = 3,
iters: int = None,
*args,
**kwargs,
): ):
self.llms = llms self.llms = llms
self.load_balancing = load_balancing self.load_balancing = load_balancing
self.retry_attempts = retry_attempts self.retry_attempts = retry_attempts
self.iters = iters
self.last_responses = None self.last_responses = None
self.task_history = [] self.task_history = []
def run(self, task: str): def run(self, task: str):
"""Run the task string""" """Run the task string"""
with ThreadPoolExecutor() as executor: try:
responses = executor.map(lambda llm: llm(task), self.llms) for i in range(self.iters):
return list(responses) with ThreadPoolExecutor() as executor:
responses = executor.map(
lambda llm: llm(task), self.llms
)
return list(responses)
except Exception as error:
print(
f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]"
)
def print_responses(self, task): def print_responses(self, task):
"""Prints the responses in a tabular format""" """Prints the responses in a tabular format"""
@ -161,22 +173,29 @@ class GodMode:
def concurrent_run(self, task: str) -> List[str]: def concurrent_run(self, task: str) -> List[str]:
"""Synchronously run the task on all llms and collect responses""" """Synchronously run the task on all llms and collect responses"""
with ThreadPoolExecutor() as executor: try:
future_to_llm = { with ThreadPoolExecutor() as executor:
executor.submit(llm, task): llm for llm in self.llms future_to_llm = {
} executor.submit(llm, task): llm
responses = [] for llm in self.llms
for future in as_completed(future_to_llm): }
try: responses = []
responses.append(future.result()) for future in as_completed(future_to_llm):
except Exception as error: try:
print( responses.append(future.result())
f"{future_to_llm[future]} generated an" except Exception as error:
f" exception: {error}" print(
) f"{future_to_llm[future]} generated an"
self.last_responses = responses f" exception: {error}"
self.task_history.append(task) )
return responses self.last_responses = responses
self.task_history.append(task)
return responses
except Exception as error:
print(
f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]"
)
raise error
def add_llm(self, llm: Callable): def add_llm(self, llm: Callable):
"""Add an llm to the god mode""" """Add an llm to the god mode"""

@ -0,0 +1,320 @@
import asyncio
import logging
import queue
import threading
from typing import List, Optional
from fastapi import FastAPI
from swarms.structs.agent import Agent
from swarms.structs.base import BaseStructure
class SwarmNetwork(BaseStructure):
"""
SwarmNetwork class
The SwarmNetwork class is responsible for managing the agents pool
and the task queue. It also monitors the health of the agents and
scales the pool up or down based on the number of pending tasks
and the current load of the agents.
For example, if the number of pending tasks is greater than the
number of agents in the pool, the SwarmNetwork will scale up the
pool by adding new agents. If the number of pending tasks is less
than the number of agents in the pool, the SwarmNetwork will scale
down the pool by removing agents.
The SwarmNetwork class also provides a simple API for interacting
with the agents pool. The API is implemented using the Flask
framework and is enabled by default. The API can be disabled by
setting the `api_enabled` parameter to False.
Features:
- Agent pool management
- Task queue management
- Agent health monitoring
- Agent pool scaling
- Simple API for interacting with the agent pool
- Simple API for interacting with the task queue
- Simple API for interacting with the agent health monitor
- Simple API for interacting with the agent pool scaler
- Create APIs for each agent in the pool (optional)
- Run each agent on it's own thread
- Run each agent on it's own process
- Run each agent on it's own container
- Run each agent on it's own machine
- Run each agent on it's own cluster
"""
def __init__(
self,
idle_threshold: float = 0.2,
busy_threshold: float = 0.7,
agents: List[Agent] = None,
api_enabled: Optional[bool] = False,
logging_enabled: Optional[bool] = False,
*args,
**kwargs,
):
self.task_queue = queue.Queue()
self.idle_threshold = idle_threshold
self.busy_threshold = busy_threshold
self.lock = threading.Lock()
self.agents = agents
self.api_enabled = api_enabled
self.logging_enabled = logging_enabled
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
if api_enabled:
self.api = FastAPI()
self.agent_pool = []
def add_task(self, task):
"""Add task to the task queue
Args:
task (_type_): _description_
Example:
>>> from swarms.structs.agent import Agent
>>> from swarms.structs.swarm_net import SwarmNetwork
>>> agent = Agent()
>>> swarm = SwarmNetwork(agents=[agent])
>>> swarm.add_task("task")
"""
self.logger.info(f"Adding task {task} to queue")
try:
self.task_queue.put(task)
self.logger.info(f"Task {task} added to queue")
except Exception as error:
print(
f"Error adding task to queue: {error} try again with"
" a new task"
)
raise error
async def async_add_task(self, task):
"""Add task to the task queue
Args:
task (_type_): _description_
Example:
>>> from swarms.structs.agent import Agent
>>> from swarms.structs.swarm_net import SwarmNetwork
>>> agent = Agent()
>>> swarm = SwarmNetwork(agents=[agent])
>>> swarm.add_task("task")
"""
self.logger.info(
f"Adding task {task} to queue asynchronously"
)
try:
# Add task to queue asynchronously with asyncio
loop = asyncio.get_running_loop()
await loop.run_in_executor(
None, self.task_queue.put, task
)
self.logger.info(f"Task {task} added to queue")
except Exception as error:
print(
f"Error adding task to queue: {error} try again with"
" a new task"
)
raise error
def run_single_agent(
self, agent_id, task: Optional[str] = None, *args, **kwargs
):
"""Run agent the task on the agent id
Args:
agent_id (_type_): _description_
task (str, optional): _description_. Defaults to None.
Raises:
ValueError: _description_
Returns:
_type_: _description_
"""
self.logger.info(f"Running task {task} on agent {agent_id}")
try:
for agent in self.agents_pool:
if agent.id == agent_id:
return agent.run(task, *args, **kwargs)
self.logger.info(f"No agent found with ID {agent_id}")
raise ValueError(f"No agent found with ID {agent_id}")
except Exception as error:
print(f"Error running task on agent: {error}")
raise error
def run_many_agents(
self, task: Optional[str] = None, *args, **kwargs
) -> List:
"""Run the task on all agents
Args:
task (str, optional): _description_. Defaults to None.
Returns:
List: _description_
"""
self.logger.info(f"Running task {task} on all agents")
try:
return [
agent.run(task, *args, **kwargs)
for agent in self.agents_pool
]
except Exception as error:
print(f"Error running task on agents: {error}")
raise error
def list_agents(self):
"""List all agents
Returns:
List: _description_
"""
self.logger.info("[Listing all active agents]")
try:
# return [agent.id for agent in self.agents_pool]
for agent in self.agents:
num_agents = len(self.agents)
self.logger.info(
f"[Number of active agents: {num_agents}]"
)
return self.logger.info(
f"[Agent] [ID: {agent.id}] [Name:"
f" {agent.agent_name}] [Description:"
f" {agent.agent_description}] [Status] [Running]"
)
except Exception as error:
print(f"Error listing agents: {error}")
raise error
def get_agent(self, agent_id):
"""Get agent by id
Args:
agent_id (_type_): _description_
Returns:
_type_: _description_
"""
self.logger.info(f"Getting agent {agent_id}")
try:
for agent in self.agents_pool:
if agent.id == agent_id:
return agent
raise ValueError(f"No agent found with ID {agent_id}")
except Exception as error:
self.logger.error(f"Error getting agent: {error}")
raise error
def add_agent(self, agent):
"""Add agent to the agent pool
Args:
agent (_type_): _description_
"""
self.logger.info(f"Adding agent {agent} to pool")
try:
self.agents_pool.append(agent)
except Exception as error:
print(f"Error adding agent to pool: {error}")
raise error
def remove_agent(self, agent_id):
"""Remove agent from the agent pool
Args:
agent_id (_type_): _description_
"""
self.logger.info(f"Removing agent {agent_id} from pool")
try:
for agent in self.agents_pool:
if agent.id == agent_id:
self.agents_pool.remove(agent)
return
raise ValueError(f"No agent found with ID {agent_id}")
except Exception as error:
print(f"Error removing agent from pool: {error}")
raise error
async def async_remove_agent(self, agent_id):
"""Remove agent from the agent pool
Args:
agent_id (_type_): _description_
"""
self.logger.info(f"Removing agent {agent_id} from pool")
try:
# Remove agent from pool asynchronously with asyncio
loop = asyncio.get_running_loop()
await loop.run_in_executor(
None, self.remove_agent, agent_id
)
except Exception as error:
print(f"Error removing agent from pool: {error}")
raise error
def scale_up(self, num_agents: int = 1):
"""Scale up the agent pool
Args:
num_agents (int, optional): _description_. Defaults to 1.
"""
self.logger.info(f"Scaling up agent pool by {num_agents}")
try:
for _ in range(num_agents):
self.agents_pool.append(Agent())
except Exception as error:
print(f"Error scaling up agent pool: {error}")
raise error
def scale_down(self, num_agents: int = 1):
"""Scale down the agent pool
Args:
num_agents (int, optional): _description_. Defaults to 1.
"""
for _ in range(num_agents):
self.agents_pool.pop()
# - Create APIs for each agent in the pool (optional) with fastapi
def create_apis_for_agents(self):
"""Create APIs for each agent in the pool (optional) with fastapi
Returns:
_type_: _description_
"""
self.apis = []
for agent in self.agents:
self.api.get(f"/{agent.id}")
def run_agent(task: str, *args, **kwargs):
return agent.run(task, *args, **kwargs)
self.apis.append(self.api)
def run(self):
"""run the swarm network"""
# Observe all agents in the pool
self.logger.info("Starting the SwarmNetwork")
for agent in self.agents:
self.logger.info(f"Starting agent {agent.id}")
self.logger.info(
f"[Agent][{agent.id}] [Status] [Running] [Awaiting"
" Task]"
)

@ -1,4 +1,7 @@
import sched
import time
from dataclasses import dataclass, field from dataclasses import dataclass, field
from datetime import datetime
from typing import ( from typing import (
Any, Any,
Callable, Callable,
@ -10,23 +13,36 @@ from typing import (
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
# Define a generic Task that can handle different types of callable objects
@dataclass @dataclass
class Task: class Task:
""" """
Task class for running a task in a sequential workflow. Task class for running a task in a sequential workflow.
Attributes:
Args: description (str): Description of the task.
description (str): The description of the task. agent (Union[Callable, Agent]): Agent or callable object to run the task.
agent (Union[Callable, Agent]): The model or agent to execute the task. args (List[Any]): Arguments to pass to the agent or callable object.
args (List[Any]): Additional arguments to pass to the task execution. kwargs (Dict[str, Any]): Keyword arguments to pass to the agent or callable object.
kwargs (Dict[str, Any]): Additional keyword arguments to pass to the task execution. result (Any): Result of the task.
result (Any): The result of the task execution. history (List[Any]): History of the task.
history (List[Any]): The history of the task execution. schedule_time (datetime): Time to schedule the task.
scheduler (sched.scheduler): Scheduler to schedule the task.
trigger (Callable): Trigger to run the task.
action (Callable): Action to run the task.
condition (Callable): Condition to run the task.
priority (int): Priority of the task.
dependencies (List[Task]): List of tasks that need to be completed before this task can be executed.
Methods: Methods:
execute: Execute the task. execute: Execute the task by calling the agent or model with the arguments and keyword arguments.
handle_scheduled_task: Handles the execution of a scheduled task.
set_trigger: Sets the trigger for the task.
set_action: Sets the action for the task.
set_condition: Sets the condition for the task.
is_completed: Checks whether the task has been completed.
add_dependency: Adds a task to the list of dependencies.
set_priority: Sets the priority of the task.
check_dependency_completion: Checks whether all the dependencies have been completed.
Examples: Examples:
@ -45,34 +61,140 @@ class Task:
kwargs: Dict[str, Any] = field(default_factory=dict) kwargs: Dict[str, Any] = field(default_factory=dict)
result: Any = None result: Any = None
history: List[Any] = field(default_factory=list) history: List[Any] = field(default_factory=list)
# logger = logging.getLogger(__name__) schedule_time: datetime = None
scheduler = sched.scheduler(time.time, time.sleep)
trigger: Callable = None
action: Callable = None
condition: Callable = None
priority: int = 0
dependencies: List["Task"] = field(default_factory=list)
def execute(self): def execute(self):
""" """
Execute the task. Execute the task by calling the agent or model with the arguments and
keyword arguments.
Examples:
>>> from swarms.structs import Task, Agent
>>> from swarms.models import OpenAIChat
>>> agent = Agent(llm=OpenAIChat(openai_api_key=""), max_loops=1, dashboard=False)
>>> task = Task(description="What's the weather in miami", agent=agent)
>>> task.execute()
>>> task.result
Raises:
ValueError: If a Agent instance is used as a task and the 'task' argument is not provided.
""" """
if isinstance(self.agent, Agent):
# Add a prompt to notify the Agent of the sequential workflow try:
if "prompt" in self.kwargs: if isinstance(self.agent, Agent):
self.kwargs["prompt"] += ( if self.condition is None or self.condition():
f"\n\nPrevious output: {self.result}" self.result = self.agent.run(
if self.result *self.args, **self.kwargs
else ""
)
else:
self.kwargs["prompt"] = (
f"Main task: {self.description}"
+ (
f"\n\nPrevious output: {self.result}"
if self.result
else ""
) )
self.history.append(self.result)
if self.action is not None:
self.action()
else:
self.result = self.agent.run(
*self.args, **self.kwargs
) )
self.result = self.agent.run(*self.args, **self.kwargs)
else:
self.result = self.agent(*self.args, **self.kwargs)
self.history.append(self.result) self.history.append(self.result)
except Exception as error:
print(f"[ERROR][Task] {error}")
def run(self):
self.execute()
def __call__(self):
self.execute()
def handle_scheduled_task(self):
"""
Handles the execution of a scheduled task.
If the schedule time is not set or has already passed, the task is executed immediately.
Otherwise, the task is scheduled to be executed at the specified schedule time.
"""
try:
if (
self.schedule_time is None
or self.schedule_time <= datetime.now()
):
self.execute()
else:
delay = (
self.schedule_time - datetime.now()
).total_seconds()
self.scheduler.enter(delay, 1, self.execute)
self.scheduler_run()
except Exception as error:
print(f"[ERROR][Task] {error}")
def set_trigger(self, trigger: Callable):
"""
Sets the trigger for the task.
Args:
trigger (Callable): The trigger to set.
"""
self.trigger = trigger
def set_action(self, action: Callable):
"""
Sets the action for the task.
Args:
action (Callable): The action to set.
"""
self.action = action
def set_condition(self, condition: Callable):
"""
Sets the condition for the task.
Args:
condition (Callable): The condition to set.
"""
self.condition = condition
def is_completed(self):
"""Is the task completed?
Returns:
_type_: _description_
"""
return self.result is not None
def add_dependency(self, task):
"""Adds a task to the list of dependencies.
Args:
task (_type_): _description_
"""
self.dependencies.append(task)
def set_priority(self, priority: int):
"""Sets the priority of the task.
Args:
priority (int): _description_
"""
self.priority = priority
def check_dependency_completion(self):
"""
Checks whether all the dependencies have been completed.
Returns:
bool: True if all the dependencies have been completed, False otherwise.
"""
try:
for task in self.dependencies:
if not task.is_completed():
return False
except Exception as error:
print(
f"[ERROR][Task][check_dependency_completion] {error}"
)

@ -0,0 +1,107 @@
import json
from typing import List, Optional
from pydantic.v1 import BaseModel, Field, Json, root_validator
from swarms.structs.agent import Agent
from swarms.structs.task import Task
class Team(BaseModel):
"""
Class that represents a group of agents, how they should work together and
their tasks.
Attributes:
tasks (Optional[List[Task]]): List of tasks.
agents (Optional[List[Agent]]): List of agents in this Team.
architecture (str): Architecture that the Team will follow. Default is "sequential".
verbose (bool): Verbose mode for the Agent Execution. Default is False.
config (Optional[Json]): Configuration of the Team. Default is None.
"""
tasks: Optional[List[Task]] = Field(description="List of tasks")
agents: Optional[List[Agent]] = Field(
description="List of agents in this Team."
)
architecture = Field(
description="architecture that the Team will follow.",
default="sequential",
)
verbose: bool = Field(
description="Verbose mode for the Agent Execution",
default=False,
)
config: Optional[Json] = Field(
description="Configuration of the Team.", default=None
)
@root_validator(pre=True)
def check_config(_cls, values):
if not values.get("config") and (
not values.get("agents") and not values.get("tasks")
):
raise ValueError(
"Either agents and task need to be set or config."
)
if values.get("config"):
config = json.loads(values.get("config"))
if not config.get("agents") or not config.get("tasks"):
raise ValueError(
"Config should have agents and tasks."
)
values["agents"] = [
Agent(**agent) for agent in config["agents"]
]
tasks = []
for task in config["tasks"]:
task_agent = [
agt
for agt in values["agents"]
if agt.role == task["agent"]
][0]
del task["agent"]
tasks.append(Task(**task, agent=task_agent))
values["tasks"] = tasks
return values
def run(self) -> str:
"""
Kickoff the Team to work on its tasks.
Returns:
output (List[str]): Output of the Team for each task.
"""
if self.architecture == "sequential":
return self.__sequential_loop()
def __sequential_loop(self) -> str:
"""
Loop that executes the sequential architecture.
Returns:
output (str): Output of the Team.
"""
task_outcome = None
for task in self.tasks:
# Add delegation tools to the task if the agent allows it
# if task.agent.allow_delegation:
# tools = AgentTools(agents=self.agents).tools()
# task.tools += tools
self.__log(f"\nWorking Agent: {task.agent.role}")
self.__log(f"Starting Task: {task.description} ...")
task_outcome = task.execute(task_outcome)
self.__log(f"Task output: {task_outcome}")
return task_outcome
def __log(self, message):
if self.verbose:
print(message)

@ -1,4 +1,5 @@
from typing import Dict, Any, List import json
from typing import Dict, Any, List, Optional
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
@ -66,3 +67,54 @@ def distribute_tasks(
f"No agent found with ID {agent_id}. Task '{task}' is" f"No agent found with ID {agent_id}. Task '{task}' is"
" not assigned." " not assigned."
) )
def find_token_in_text(text: str, token: str = "<DONE>") -> bool:
"""
Parse a block of text for a specific token.
Args:
text (str): The text to parse.
token (str): The token to find.
Returns:
bool: True if the token is found in the text, False otherwise.
"""
# Check if the token is in the text
if token in text:
return True
else:
return False
def extract_key_from_json(
json_response: str, key: str
) -> Optional[str]:
"""
Extract a specific key from a JSON response.
Args:
json_response (str): The JSON response to parse.
key (str): The key to extract.
Returns:
Optional[str]: The value of the key if it exists, None otherwise.
"""
response_dict = json.loads(json_response)
return response_dict.get(key)
def extract_tokens_from_text(
text: str, tokens: List[str]
) -> List[str]:
"""
Extract a list of tokens from a text response.
Args:
text (str): The text to parse.
tokens (List[str]): The tokens to extract.
Returns:
List[str]: The tokens that were found in the text.
"""
return [token for token in tokens if token in text]

@ -1,11 +0,0 @@
from swarms.structs.autoscaler import AutoScaler
from swarms.swarms.god_mode import GodMode
from swarms.swarms.multi_agent_collab import MultiAgentCollaboration
from swarms.swarms.base import AbstractSwarm
__all__ = [
"AutoScaler",
"GodMode",
"MultiAgentCollaboration",
"AbstractSwarm",
]

@ -0,0 +1,11 @@
import subprocess
from swarms.telemetry.check_update import check_for_update
def auto_update():
"""auto update swarms"""
try:
if check_for_update():
subprocess.run(["pip", "install", "--upgrade", "swarms"])
except Exception as e:
print(e)

@ -0,0 +1,46 @@
import pkg_resources
import requests
from packaging import version
import importlib.util
import sys
# borrowed from: https://stackoverflow.com/a/1051266/656011
def check_for_package(package):
if package in sys.modules:
return True
elif (spec := importlib.util.find_spec(package)) is not None:
try:
module = importlib.util.module_from_spec(spec)
sys.modules[package] = module
spec.loader.exec_module(module)
return True
except ImportError:
return False
else:
return False
def check_for_update():
"""Check for updates
Returns:
BOOL: Flag to indicate if there is an update
"""
# Fetch the latest version from the PyPI API
response = requests.get("https://pypi.org/pypi/swarms/json")
latest_version = response.json()["info"]["version"]
# Get the current version using pkg_resources
current_version = pkg_resources.get_distribution("swarms").version
return version.parse(latest_version) > version.parse(
current_version
)
# out = check_for_update()
# print(out)

@ -0,0 +1,158 @@
import platform
import subprocess
import pkg_resources
import psutil
import toml
def get_python_version():
return platform.python_version()
def get_pip_version():
try:
pip_version = (
subprocess.check_output(["pip", "--version"])
.decode()
.split()[1]
)
except Exception as e:
pip_version = str(e)
return pip_version
def get_oi_version():
try:
oi_version_cmd = (
subprocess.check_output(["interpreter", "--version"])
.decode()
.split()[1]
)
except Exception as e:
oi_version_cmd = str(e)
oi_version_pkg = pkg_resources.get_distribution(
"open-interpreter"
).version
oi_version = oi_version_cmd, oi_version_pkg
return oi_version
def get_os_version():
return platform.platform()
def get_cpu_info():
return platform.processor()
def get_ram_info():
vm = psutil.virtual_memory()
used_ram_gb = vm.used / (1024**3)
free_ram_gb = vm.free / (1024**3)
total_ram_gb = vm.total / (1024**3)
return (
f"{total_ram_gb:.2f} GB, used: {used_ram_gb:.2f}, free:"
f" {free_ram_gb:.2f}"
)
def get_package_mismatches(file_path="pyproject.toml"):
with open(file_path, "r") as file:
pyproject = toml.load(file)
dependencies = pyproject["tool"]["poetry"]["dependencies"]
dev_dependencies = pyproject["tool"]["poetry"]["group"]["dev"][
"dependencies"
]
dependencies.update(dev_dependencies)
installed_packages = {
pkg.key: pkg.version for pkg in pkg_resources.working_set
}
mismatches = []
for package, version_info in dependencies.items():
if isinstance(version_info, dict):
version_info = version_info["version"]
installed_version = installed_packages.get(package)
if installed_version and version_info.startswith("^"):
expected_version = version_info[1:]
if not installed_version.startswith(expected_version):
mismatches.append(
f"\t {package}: Mismatch,"
f" pyproject.toml={expected_version},"
f" pip={installed_version}"
)
else:
mismatches.append(f"\t {package}: Not found in pip list")
return "\n" + "\n".join(mismatches)
def interpreter_info(interpreter):
try:
if interpreter.offline and interpreter.llm.api_base:
try:
curl = subprocess.check_output(
f"curl {interpreter.llm.api_base}"
)
except Exception as e:
curl = str(e)
else:
curl = "Not local"
messages_to_display = []
for message in interpreter.messages:
message = message.copy()
try:
if len(message["content"]) > 600:
message["content"] = (
message["content"][:300]
+ "..."
+ message["content"][-300:]
)
except Exception as e:
print(str(e), "for message:", message)
messages_to_display.append(message)
return f"""
# Interpreter Info
Vision: {interpreter.llm.supports_vision}
Model: {interpreter.llm.model}
Function calling: {interpreter.llm.supports_functions}
Context window: {interpreter.llm.context_window}
Max tokens: {interpreter.llm.max_tokens}
Auto run: {interpreter.auto_run}
API base: {interpreter.llm.api_base}
Offline: {interpreter.offline}
Curl output: {curl}
# Messages
System Message: {interpreter.system_message}
""" + "\n\n".join([str(m) for m in messages_to_display])
except:
return "Error, couldn't get interpreter info"
def system_info(interpreter):
oi_version = get_oi_version()
print(f"""
Python Version: {get_python_version()}
Pip Version: {get_pip_version()}
Open-interpreter Version: cmd:{oi_version[0]}, pkg: {oi_version[1]}
OS Version and Architecture: {get_os_version()}
CPU Info: {get_cpu_info()}
RAM Info: {get_ram_info()}
{interpreter_info(interpreter)}
""")
# Removed the following, as it causes `FileNotFoundError: [Errno 2] No such file or directory: 'pyproject.toml'`` on prod
# (i think it works on dev, but on prod the pyproject.toml will not be in the cwd. might not be accessible at all)
# Package Version Mismatches:
# {get_package_mismatches()}

@ -1,25 +1,30 @@
from swarms.utils.class_args_wrapper import print_class_parameters
from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.code_interpreter import SubprocessCodeInterpreter
from swarms.utils.markdown_message import display_markdown_message
from swarms.utils.parse_code import (
extract_code_in_backticks_in_string,
)
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.math_eval import math_eval
from swarms.utils.llm_metrics_decorator import metrics_decorator
from swarms.utils.device_checker_cuda import check_device from swarms.utils.device_checker_cuda import check_device
from swarms.utils.find_img_path import find_image_path
from swarms.utils.llm_metrics_decorator import metrics_decorator
from swarms.utils.load_model_torch import load_model_torch from swarms.utils.load_model_torch import load_model_torch
from swarms.utils.markdown_message import display_markdown_message
from swarms.utils.math_eval import math_eval
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.prep_torch_model_inference import ( from swarms.utils.prep_torch_model_inference import (
prep_torch_inference, prep_torch_inference,
) )
from swarms.utils.token_count_tiktoken import limit_tokens_from_string
__all__ = [ __all__ = [
"display_markdown_message",
"SubprocessCodeInterpreter", "SubprocessCodeInterpreter",
"extract_code_in_backticks_in_string", "display_markdown_message",
"pdf_to_text", "extract_code_from_markdown",
"find_image_path",
"limit_tokens_from_string",
"load_model_torch",
"math_eval", "math_eval",
"metrics_decorator", "metrics_decorator",
"check_device", "pdf_to_text",
"load_model_torch",
"prep_torch_inference", "prep_torch_inference",
"print_class_parameters",
"check_device",
] ]

@ -5,22 +5,7 @@ import time
import traceback import traceback
class BaseCodeInterpreter: class SubprocessCodeInterpreter:
"""
.run is a generator that yields a dict with attributes: active_line, output
"""
def __init__(self):
pass
def run(self, code):
pass
def terminate(self):
pass
class SubprocessCodeInterpreter(BaseCodeInterpreter):
""" """
SubprocessCodeinterpreter is a base class for code interpreters that run code in a subprocess. SubprocessCodeinterpreter is a base class for code interpreters that run code in a subprocess.
@ -43,12 +28,36 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
self.done = threading.Event() self.done = threading.Event()
def detect_active_line(self, line): def detect_active_line(self, line):
"""Detect if the line is an active line
Args:
line (_type_): _description_
Returns:
_type_: _description_
"""
return None return None
def detect_end_of_execution(self, line): def detect_end_of_execution(self, line):
"""detect if the line is an end of execution line
Args:
line (_type_): _description_
Returns:
_type_: _description_
"""
return None return None
def line_postprocessor(self, line): def line_postprocessor(self, line):
"""Line postprocessor
Args:
line (_type_): _description_
Returns:
_type_: _description_
"""
return line return line
def preprocess_code(self, code): def preprocess_code(self, code):
@ -61,9 +70,11 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
return code return code
def terminate(self): def terminate(self):
"""terminate the subprocess"""
self.process.terminate() self.process.terminate()
def start_process(self): def start_process(self):
"""start the subprocess"""
if self.process: if self.process:
self.terminate() self.terminate()
@ -88,6 +99,14 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
).start() ).start()
def run(self, code: str): def run(self, code: str):
"""Run the code in the subprocess
Args:
code (str): _description_
Yields:
_type_: _description_
"""
retry_count = 0 retry_count = 0
max_retries = 3 max_retries = 3
@ -157,6 +176,12 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
break break
def handle_stream_output(self, stream, is_error_stream): def handle_stream_output(self, stream, is_error_stream):
"""Handle the output from the subprocess
Args:
stream (_type_): _description_
is_error_stream (bool): _description_
"""
for line in iter(stream.readline, ""): for line in iter(stream.readline, ""):
if self.debug_mode: if self.debug_mode:
print(f"Received output line:\n{line}\n---") print(f"Received output line:\n{line}\n---")
@ -179,3 +204,12 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
self.done.set() self.done.set()
else: else:
self.output_queue.put({"output": line}) self.output_queue.put({"output": line})
# interpreter = SubprocessCodeInterpreter()
# interpreter.start_cmd = "python3"
# for output in interpreter.run("""
# print("hello")
# print("world")
# """):
# print(output)

@ -0,0 +1,24 @@
import os
import re
def find_image_path(text):
"""Find the image path from the text
Args:
text (_type_): _description_
Returns:
_type_: _description_
"""
pattern = r"([A-Za-z]:\\[^:\n]*?\.(png|jpg|jpeg|PNG|JPG|JPEG))|(/[^:\n]*?\.(png|jpg|jpeg|PNG|JPG|JPEG))"
matches = [
match.group()
for match in re.finditer(pattern, text)
if match.group()
]
matches += [match.replace("\\", "") for match in matches if match]
existing_paths = [
match for match in matches if os.path.exists(match)
]
return max(existing_paths, key=len) if existing_paths else None

@ -1,23 +1,27 @@
from rich import print as rich_print from rich.console import Console
from rich.markdown import Markdown from rich.markdown import Markdown
from rich.rule import Rule from rich.rule import Rule
def display_markdown_message(message: str): def display_markdown_message(message: str, color: str = "cyan"):
""" """
Display markdown message. Works with multiline strings with lots of indentation. Display markdown message. Works with multiline strings with lots of indentation.
Will automatically make single line > tags beautiful. Will automatically make single line > tags beautiful.
""" """
console = Console()
for line in message.split("\n"): for line in message.split("\n"):
line = line.strip() line = line.strip()
if line == "": if line == "":
print("") console.print("")
elif line == "---": elif line == "---":
rich_print(Rule(style="white")) console.print(Rule(style=color))
else: else:
rich_print(Markdown(line)) console.print(Markdown(line, style=color))
if "\n" not in message and message.startswith(">"): if "\n" not in message and message.startswith(">"):
# Aesthetic choice. For these tags, they need a space below them # Aesthetic choice. For these tags, they need a space below them
print("") console.print("")
# display_markdown_message("I love you and you are beautiful.", "cyan")

@ -1,31 +1,19 @@
import re import re
# def extract_code_in_backticks_in_string(s: str) -> str:
# """
# Extracts code blocks from a markdown string.
# Args: def extract_code_from_markdown(markdown_content: str):
# s (str): The markdown string to extract code from.
# Returns:
# list: A list of tuples. Each tuple contains the language of the code block (if specified) and the code itself.
# """
# pattern = r"```([\w\+\#\-\.\s]*)\n(.*?)```"
# matches = re.findall(pattern, s, re.DOTALL)
# out = [(match[0], match[1].strip()) for match in matches]
# print(out)
def extract_code_in_backticks_in_string(s: str) -> str:
""" """
Extracts code blocks from a markdown string. Extracts code blocks from a Markdown string and returns them as a single string.
Args: Args:
s (str): The markdown string to extract code from. - markdown_content (str): The Markdown content as a string.
Returns: Returns:
str: A string containing all the code blocks. - str: A single string containing all the code blocks separated by newlines.
""" """
pattern = r"```([\w\+\#\-\.\s]*)(.*?)```" # Regular expression for fenced code blocks
matches = re.findall(pattern, s, re.DOTALL) pattern = r"```(?:\w+\n)?(.*?)```"
return "\n".join(match[1].strip() for match in matches) matches = re.findall(pattern, markdown_content, re.DOTALL)
# Concatenate all code blocks separated by newlines
return "\n".join(code.strip() for code in matches)

@ -0,0 +1,47 @@
from swarms.structs import Task, Agent
from swarms.models import OpenAIChat
from dotenv import load_dotenv
import os
# Load the environment variables
load_dotenv()
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(description="What's the weather in miami", agent=agent)
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")

@ -1,54 +0,0 @@
import pytest
from unittest.mock import Mock, patch
from swarms.models.multion import MultiOn
@pytest.fixture
def multion_instance():
return MultiOn()
@pytest.fixture
def mock_multion():
return Mock()
def test_multion_import():
with pytest.raises(ImportError):
pass
def test_multion_init():
multion = MultiOn()
assert isinstance(multion, MultiOn)
def test_multion_run_with_valid_input(multion_instance, mock_multion):
task = "Order chicken tendies"
url = "https://www.google.com/"
mock_multion.new_session.return_value = (
"Order chicken tendies. https://www.google.com/"
)
with patch("swarms.models.multion.multion", mock_multion):
response = multion_instance.run(task, url)
assert (
response == "Order chicken tendies. https://www.google.com/"
)
def test_multion_run_with_invalid_input(
multion_instance, mock_multion
):
task = ""
url = "https://www.google.com/"
mock_multion.new_session.return_value = None
with patch("swarms.models.multion.multion", mock_multion):
response = multion_instance.run(task, url)
assert response is None
# Add more test cases to cover different scenarios, edge cases, and error handling as needed.

@ -0,0 +1,59 @@
import pytest
import torch
from swarms.models.open_dalle import OpenDalle
def test_init():
od = OpenDalle()
assert isinstance(od, OpenDalle)
def test_init_custom_model():
od = OpenDalle(model_name="custom_model")
assert od.pipeline.model_name == "custom_model"
def test_init_custom_dtype():
od = OpenDalle(torch_dtype=torch.float32)
assert od.pipeline.torch_dtype == torch.float32
def test_init_custom_device():
od = OpenDalle(device="cpu")
assert od.pipeline.device == "cpu"
def test_run():
od = OpenDalle()
result = od.run("A picture of a cat")
assert isinstance(result, torch.Tensor)
def test_run_no_task():
od = OpenDalle()
with pytest.raises(ValueError, match="Task cannot be None"):
od.run(None)
def test_run_non_string_task():
od = OpenDalle()
with pytest.raises(TypeError, match="Task must be a string"):
od.run(123)
def test_run_empty_task():
od = OpenDalle()
with pytest.raises(ValueError, match="Task cannot be empty"):
od.run("")
def test_run_custom_args():
od = OpenDalle()
result = od.run("A picture of a cat", custom_arg="custom_value")
assert isinstance(result, torch.Tensor)
def test_run_error():
od = OpenDalle()
with pytest.raises(Exception):
od.run("A picture of a cat", raise_error=True)

@ -162,74 +162,3 @@ def test_ssd1b_repr_str(ssd1b_model):
image_url = ssd1b_model(task) image_url = ssd1b_model(task)
assert repr(ssd1b_model) == f"SSD1B(image_url={image_url})" assert repr(ssd1b_model) == f"SSD1B(image_url={image_url})"
assert str(ssd1b_model) == f"SSD1B(image_url={image_url})" assert str(ssd1b_model) == f"SSD1B(image_url={image_url})"
import pytest
from your_module import SSD1B
# Create fixtures if needed
@pytest.fixture
def ssd1b_model():
return SSD1B()
# Test cases for additional scenarios and behaviors
def test_ssd1b_dashboard_printing(ssd1b_model, capsys):
ssd1b_model.dashboard = True
ssd1b_model.print_dashboard()
captured = capsys.readouterr()
assert "SSD1B Dashboard:" in captured.out
def test_ssd1b_generate_image_name(ssd1b_model):
task = "A painting of a dog"
img_name = ssd1b_model._generate_image_name(task)
assert isinstance(img_name, str)
assert len(img_name) > 0
def test_ssd1b_set_width_height(ssd1b_model, mocker):
img = mocker.MagicMock()
width, height = 800, 600
result = ssd1b_model.set_width_height(img, width, height)
assert result == img.resize.return_value
def test_ssd1b_read_img(ssd1b_model, mocker):
img = mocker.MagicMock()
result = ssd1b_model.read_img(img)
assert result == img.open.return_value
def test_ssd1b_convert_to_bytesio(ssd1b_model, mocker):
img = mocker.MagicMock()
img_format = "PNG"
result = ssd1b_model.convert_to_bytesio(img, img_format)
assert isinstance(result, bytes)
def test_ssd1b_save_image(ssd1b_model, mocker, tmp_path):
img = mocker.MagicMock()
img_name = "test.png"
save_path = tmp_path / img_name
ssd1b_model._download_image(img, img_name, save_path)
assert save_path.exists()
def test_ssd1b_repr_str(ssd1b_model):
task = "A painting of a dog"
image_url = ssd1b_model(task)
assert repr(ssd1b_model) == f"SSD1B(image_url={image_url})"
assert str(ssd1b_model) == f"SSD1B(image_url={image_url})"
def test_ssd1b_rate_limited_call(ssd1b_model, mocker):
task = "A painting of a dog"
mocker.patch.object(
ssd1b_model,
"__call__",
side_effect=Exception("Rate limit exceeded"),
)
with pytest.raises(Exception, match="Rate limit exceeded"):
ssd1b_model.rate_limited_call(task)

@ -0,0 +1,122 @@
from unittest.mock import MagicMock, patch
import pytest
from swarms.models.zeroscope import ZeroscopeTTV
@patch("swarms.models.zeroscope.DiffusionPipeline")
@patch("swarms.models.zeroscope.DPMSolverMultistepScheduler")
def test_zeroscope_ttv_init(mock_scheduler, mock_pipeline):
zeroscope = ZeroscopeTTV()
mock_pipeline.from_pretrained.assert_called_once()
mock_scheduler.assert_called_once()
assert zeroscope.model_name == "cerspense/zeroscope_v2_576w"
assert zeroscope.chunk_size == 1
assert zeroscope.dim == 1
assert zeroscope.num_inference_steps == 40
assert zeroscope.height == 320
assert zeroscope.width == 576
assert zeroscope.num_frames == 36
@patch("swarms.models.zeroscope.DiffusionPipeline")
@patch("swarms.models.zeroscope.DPMSolverMultistepScheduler")
def test_zeroscope_ttv_forward(mock_scheduler, mock_pipeline):
zeroscope = ZeroscopeTTV()
mock_pipeline_instance = MagicMock()
mock_pipeline.from_pretrained.return_value = (
mock_pipeline_instance
)
mock_pipeline_instance.return_value = MagicMock(
frames="Generated frames"
)
mock_pipeline_instance.enable_vae_slicing.assert_called_once()
mock_pipeline_instance.enable_forward_chunking.assert_called_once_with(
chunk_size=1, dim=1
)
result = zeroscope.forward("Test task")
assert result == "Generated frames"
mock_pipeline_instance.assert_called_once_with(
"Test task",
num_inference_steps=40,
height=320,
width=576,
num_frames=36,
)
@patch("swarms.models.zeroscope.DiffusionPipeline")
@patch("swarms.models.zeroscope.DPMSolverMultistepScheduler")
def test_zeroscope_ttv_forward_error(mock_scheduler, mock_pipeline):
zeroscope = ZeroscopeTTV()
mock_pipeline_instance = MagicMock()
mock_pipeline.from_pretrained.return_value = (
mock_pipeline_instance
)
mock_pipeline_instance.return_value = MagicMock(
frames="Generated frames"
)
mock_pipeline_instance.side_effect = Exception("Test error")
with pytest.raises(Exception, match="Test error"):
zeroscope.forward("Test task")
@patch("swarms.models.zeroscope.DiffusionPipeline")
@patch("swarms.models.zeroscope.DPMSolverMultistepScheduler")
def test_zeroscope_ttv_call(mock_scheduler, mock_pipeline):
zeroscope = ZeroscopeTTV()
mock_pipeline_instance = MagicMock()
mock_pipeline.from_pretrained.return_value = (
mock_pipeline_instance
)
mock_pipeline_instance.return_value = MagicMock(
frames="Generated frames"
)
result = zeroscope.__call__("Test task")
assert result == "Generated frames"
mock_pipeline_instance.assert_called_once_with(
"Test task",
num_inference_steps=40,
height=320,
width=576,
num_frames=36,
)
@patch("swarms.models.zeroscope.DiffusionPipeline")
@patch("swarms.models.zeroscope.DPMSolverMultistepScheduler")
def test_zeroscope_ttv_call_error(mock_scheduler, mock_pipeline):
zeroscope = ZeroscopeTTV()
mock_pipeline_instance = MagicMock()
mock_pipeline.from_pretrained.return_value = (
mock_pipeline_instance
)
mock_pipeline_instance.return_value = MagicMock(
frames="Generated frames"
)
mock_pipeline_instance.side_effect = Exception("Test error")
with pytest.raises(Exception, match="Test error"):
zeroscope.__call__("Test task")
@patch("swarms.models.zeroscope.DiffusionPipeline")
@patch("swarms.models.zeroscope.DPMSolverMultistepScheduler")
def test_zeroscope_ttv_save_video_path(mock_scheduler, mock_pipeline):
zeroscope = ZeroscopeTTV()
mock_pipeline_instance = MagicMock()
mock_pipeline.from_pretrained.return_value = (
mock_pipeline_instance
)
mock_pipeline_instance.return_value = MagicMock(
frames="Generated frames"
)
result = zeroscope.save_video_path("Test video path")
assert result == "Test video path"
mock_pipeline_instance.assert_called_once_with(
"Test video path",
num_inference_steps=40,
height=320,
width=576,
num_frames=36,
)

@ -216,3 +216,64 @@ def test_add_task_exception(mock_put):
with pytest.raises(Exception) as e: with pytest.raises(Exception) as e:
autoscaler.add_task("test_task") autoscaler.add_task("test_task")
assert str(e.value) == "test error" assert str(e.value) == "test error"
def test_autoscaler_initialization():
autoscaler = AutoScaler(
initial_agents=5,
scale_up_factor=2,
idle_threshold=0.1,
busy_threshold=0.8,
agent=agent,
)
assert isinstance(autoscaler, AutoScaler)
assert autoscaler.scale_up_factor == 2
assert autoscaler.idle_threshold == 0.1
assert autoscaler.busy_threshold == 0.8
assert len(autoscaler.agents_pool) == 5
def test_autoscaler_add_task():
autoscaler = AutoScaler(agent=agent)
autoscaler.add_task("task1")
assert autoscaler.task_queue.qsize() == 1
def test_autoscaler_scale_up():
autoscaler = AutoScaler(
initial_agents=5, scale_up_factor=2, agent=agent
)
autoscaler.scale_up()
assert len(autoscaler.agents_pool) == 10
def test_autoscaler_scale_down():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.scale_down()
assert len(autoscaler.agents_pool) == 4
@patch("swarms.swarms.AutoScaler.scale_up")
@patch("swarms.swarms.AutoScaler.scale_down")
def test_autoscaler_monitor_and_scale(mock_scale_down, mock_scale_up):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.monitor_and_scale()
mock_scale_up.assert_called_once()
mock_scale_down.assert_called_once()
@patch("swarms.swarms.AutoScaler.monitor_and_scale")
@patch("swarms.swarms.agent.run")
def test_autoscaler_start(mock_run, mock_monitor_and_scale):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.start()
mock_run.assert_called_once()
mock_monitor_and_scale.assert_called_once()
def test_autoscaler_del_agent():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.del_agent()
assert len(autoscaler.agents_pool) == 4

@ -0,0 +1,56 @@
from unittest.mock import Mock, create_autospec, patch
from concurrent.futures import Future
from swarms.structs import ConcurrentWorkflow, Task, Agent
def test_add():
workflow = ConcurrentWorkflow(max_workers=2)
task = Mock(spec=Task)
workflow.add(task)
assert task in workflow.tasks
def test_run():
workflow = ConcurrentWorkflow(max_workers=2)
task1 = create_autospec(Task)
task2 = create_autospec(Task)
workflow.add(task1)
workflow.add(task2)
with patch(
"concurrent.futures.ThreadPoolExecutor"
) as mock_executor:
future1 = Future()
future1.set_result(None)
future2 = Future()
future2.set_result(None)
mock_executor.return_value.__enter__.return_value.submit.side_effect = [
future1,
future2,
]
mock_executor.return_value.__enter__.return_value.as_completed.return_value = [
future1,
future2,
]
workflow.run()
task1.execute.assert_called_once()
task2.execute.assert_called_once()
def test_execute_task():
workflow = ConcurrentWorkflow(max_workers=2)
task = create_autospec(Task)
workflow._execute_task(task)
task.execute.assert_called_once()
def test_agent_execution():
workflow = ConcurrentWorkflow(max_workers=2)
agent = create_autospec(Agent)
task = Task(agent)
workflow.add(task)
workflow._execute_task(task)
agent.execute.assert_called_once()

@ -3,7 +3,7 @@ import pytest
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.models.anthropic import Anthropic from swarms.models.anthropic import Anthropic
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.swarms.groupchat import GroupChat, GroupChatManager from swarms.structs.groupchat import GroupChat, GroupChatManager
llm = OpenAIChat() llm = OpenAIChat()
llm2 = Anthropic() llm2 = Anthropic()

@ -0,0 +1,146 @@
import pytest
from swarms.structs.model_parallizer import ModelParallelizer
from swarms.models import (
HuggingfaceLLM,
Mixtral,
GPT4VisionAPI,
ZeroscopeTTV,
)
# Initialize the models
custom_config = {
"quantize": True,
"quantization_config": {"load_in_4bit": True},
"verbose": True,
}
huggingface_llm = HuggingfaceLLM(
model_id="NousResearch/Nous-Hermes-2-Vision-Alpha",
**custom_config,
)
mixtral = Mixtral(load_in_4bit=True, use_flash_attention_2=True)
gpt4_vision_api = GPT4VisionAPI(max_tokens=1000)
zeroscope_ttv = ZeroscopeTTV()
def test_init():
mp = ModelParallelizer(
[
huggingface_llm,
mixtral,
gpt4_vision_api,
zeroscope_ttv,
]
)
assert isinstance(mp, ModelParallelizer)
def test_run():
mp = ModelParallelizer([huggingface_llm])
result = mp.run(
"Create a list of known biggest risks of structural collapse"
" with references"
)
assert isinstance(result, str)
def test_run_all():
mp = ModelParallelizer(
[
huggingface_llm,
mixtral,
gpt4_vision_api,
zeroscope_ttv,
]
)
result = mp.run_all(
"Create a list of known biggest risks of structural collapse"
" with references"
)
assert isinstance(result, list)
assert len(result) == 5
def test_add_llm():
mp = ModelParallelizer([huggingface_llm])
mp.add_llm(mixtral)
assert len(mp.llms) == 2
def test_remove_llm():
mp = ModelParallelizer([huggingface_llm, mixtral])
mp.remove_llm(mixtral)
assert len(mp.llms) == 1
def test_save_responses_to_file(tmp_path):
mp = ModelParallelizer([huggingface_llm])
mp.run(
"Create a list of known biggest risks of structural collapse"
" with references"
)
file = tmp_path / "responses.txt"
mp.save_responses_to_file(file)
assert file.read_text() != ""
def test_get_task_history():
mp = ModelParallelizer([huggingface_llm])
mp.run(
"Create a list of known biggest risks of structural collapse"
" with references"
)
assert mp.get_task_history() == [
"Create a list of known biggest risks of structural collapse"
" with references"
]
def test_summary(capsys):
mp = ModelParallelizer([huggingface_llm])
mp.run(
"Create a list of known biggest risks of structural collapse"
" with references"
)
mp.summary()
captured = capsys.readouterr()
assert "Tasks History:" in captured.out
def test_enable_load_balancing():
mp = ModelParallelizer([huggingface_llm])
mp.enable_load_balancing()
assert mp.load_balancing is True
def test_disable_load_balancing():
mp = ModelParallelizer([huggingface_llm])
mp.disable_load_balancing()
assert mp.load_balancing is False
def test_concurrent_run():
mp = ModelParallelizer([huggingface_llm, mixtral])
result = mp.concurrent_run(
"Create a list of known biggest risks of structural collapse"
" with references"
)
assert isinstance(result, list)
assert len(result) == 2
def test_concurrent_run_no_task():
mp = ModelParallelizer([huggingface_llm])
with pytest.raises(TypeError):
mp.concurrent_run()
def test_concurrent_run_non_string_task():
mp = ModelParallelizer([huggingface_llm])
with pytest.raises(TypeError):
mp.concurrent_run(123)
def test_concurrent_run_empty_task():
mp = ModelParallelizer([huggingface_llm])
result = mp.concurrent_run("")
assert result == [""]

@ -4,7 +4,7 @@ import pytest
from unittest.mock import Mock from unittest.mock import Mock
from swarms.structs import Agent from swarms.structs import Agent
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.swarms.multi_agent_collab import ( from swarms.structs.multi_agent_collab import (
MultiAgentCollaboration, MultiAgentCollaboration,
) )

@ -0,0 +1,50 @@
import pytest
from unittest.mock import Mock, patch
from swarms.structs.swarm_net import SwarmNetwork
from swarms.structs.agent import Agent
@pytest.fixture
def swarm_network():
agents = [Agent(id=f"Agent_{i}") for i in range(5)]
return SwarmNetwork(agents=agents)
def test_swarm_network_init(swarm_network):
assert isinstance(swarm_network.agents, list)
assert len(swarm_network.agents) == 5
@patch("swarms.structs.swarm_net.SwarmNetwork.logger")
def test_run(mock_logger, swarm_network):
swarm_network.run()
assert (
mock_logger.info.call_count == 10
) # 2 log messages per agent
def test_run_with_mocked_agents(mocker, swarm_network):
mock_agents = [Mock(spec=Agent) for _ in range(5)]
mocker.patch.object(swarm_network, "agents", mock_agents)
swarm_network.run()
for mock_agent in mock_agents:
assert mock_agent.run.called
def test_swarm_network_with_no_agents():
swarm_network = SwarmNetwork(agents=[])
assert swarm_network.agents == []
def test_swarm_network_add_agent(swarm_network):
new_agent = Agent(id="Agent_5")
swarm_network.add_agent(new_agent)
assert len(swarm_network.agents) == 6
assert swarm_network.agents[-1] == new_agent
def test_swarm_network_remove_agent(swarm_network):
agent_to_remove = swarm_network.agents[0]
swarm_network.remove_agent(agent_to_remove)
assert len(swarm_network.agents) == 4
assert agent_to_remove not in swarm_network.agents

@ -9,6 +9,8 @@ from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
) )
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.task import Task from swarms.structs.task import Task
import datetime
from datetime import timedelta
load_dotenv() load_dotenv()
@ -163,3 +165,119 @@ def test_execute():
task = Task(id="5", task="Task5", result=None, agents=[agent]) task = Task(id="5", task="Task5", result=None, agents=[agent])
# Assuming execute method returns True on successful execution # Assuming execute method returns True on successful execution
assert task.execute() is True assert task.execute() is True
def test_task_execute_with_agent(mocker):
mock_agent = mocker.Mock(spec=Agent)
mock_agent.run.return_value = "result"
task = Task(description="Test task", agent=mock_agent)
task.execute()
assert task.result == "result"
assert task.history == ["result"]
def test_task_execute_with_callable(mocker):
mock_callable = mocker.Mock()
mock_callable.run.return_value = "result"
task = Task(description="Test task", agent=mock_callable)
task.execute()
assert task.result == "result"
assert task.history == ["result"]
def test_task_execute_with_condition(mocker):
mock_agent = mocker.Mock(spec=Agent)
mock_agent.run.return_value = "result"
condition = mocker.Mock(return_value=True)
task = Task(
description="Test task", agent=mock_agent, condition=condition
)
task.execute()
assert task.result == "result"
assert task.history == ["result"]
def test_task_execute_with_condition_false(mocker):
mock_agent = mocker.Mock(spec=Agent)
mock_agent.run.return_value = "result"
condition = mocker.Mock(return_value=False)
task = Task(
description="Test task", agent=mock_agent, condition=condition
)
task.execute()
assert task.result is None
assert task.history == []
def test_task_execute_with_action(mocker):
mock_agent = mocker.Mock(spec=Agent)
mock_agent.run.return_value = "result"
action = mocker.Mock()
task = Task(
description="Test task", agent=mock_agent, action=action
)
task.execute()
assert task.result == "result"
assert task.history == ["result"]
action.assert_called_once()
def test_task_handle_scheduled_task_now(mocker):
mock_agent = mocker.Mock(spec=Agent)
mock_agent.run.return_value = "result"
task = Task(
description="Test task",
agent=mock_agent,
schedule_time=datetime.now(),
)
task.handle_scheduled_task()
assert task.result == "result"
assert task.history == ["result"]
def test_task_handle_scheduled_task_future(mocker):
mock_agent = mocker.Mock(spec=Agent)
mock_agent.run.return_value = "result"
task = Task(
description="Test task",
agent=mock_agent,
schedule_time=datetime.now() + timedelta(days=1),
)
with mocker.patch.object(
task.scheduler, "enter"
) as mock_enter, mocker.patch.object(
task.scheduler, "run"
) as mock_run:
task.handle_scheduled_task()
mock_enter.assert_called_once()
mock_run.assert_called_once()
def test_task_set_trigger():
task = Task(description="Test task", agent=Agent())
def trigger():
return True
task.set_trigger(trigger)
assert task.trigger == trigger
def test_task_set_action():
task = Task(description="Test task", agent=Agent())
def action():
return True
task.set_action(action)
assert task.action == action
def test_task_set_condition():
task = Task(description="Test task", agent=Agent())
def condition():
return True
task.set_condition(condition)
assert task.condition == condition

@ -0,0 +1,52 @@
import json
import unittest
from swarms.models import OpenAIChat
from swarms.structs import Agent, Task
from swarms.structs.team import Team
class TestTeam(unittest.TestCase):
def setUp(self):
self.agent = Agent(
llm=OpenAIChat(openai_api_key=""),
max_loops=1,
dashboard=False,
)
self.task = Task(
description="What's the weather in miami",
agent=self.agent,
)
self.team = Team(
tasks=[self.task],
agents=[self.agent],
architecture="sequential",
verbose=False,
)
def test_check_config(self):
with self.assertRaises(ValueError):
self.team.check_config({"config": None})
with self.assertRaises(ValueError):
self.team.check_config(
{"config": json.dumps({"agents": [], "tasks": []})}
)
def test_run(self):
self.assertEqual(self.team.run(), self.task.execute())
def test_sequential_loop(self):
self.assertEqual(
self.team._Team__sequential_loop(), self.task.execute()
)
def test_log(self):
self.assertIsNone(self.team._Team__log("Test message"))
self.team.verbose = True
self.assertIsNone(self.team._Team__log("Test message"))
if __name__ == "__main__":
unittest.main()

@ -1,73 +0,0 @@
from unittest.mock import patch
from swarms.structs.autoscaler import AutoScaler
from swarms.models import OpenAIChat
from swarms.structs import Agent
llm = OpenAIChat()
agent = Agent(
llm=llm,
max_loops=2,
dashboard=True,
)
def test_autoscaler_initialization():
autoscaler = AutoScaler(
initial_agents=5,
scale_up_factor=2,
idle_threshold=0.1,
busy_threshold=0.8,
agent=agent,
)
assert isinstance(autoscaler, AutoScaler)
assert autoscaler.scale_up_factor == 2
assert autoscaler.idle_threshold == 0.1
assert autoscaler.busy_threshold == 0.8
assert len(autoscaler.agents_pool) == 5
def test_autoscaler_add_task():
autoscaler = AutoScaler(agent=agent)
autoscaler.add_task("task1")
assert autoscaler.task_queue.qsize() == 1
def test_autoscaler_scale_up():
autoscaler = AutoScaler(
initial_agents=5, scale_up_factor=2, agent=agent
)
autoscaler.scale_up()
assert len(autoscaler.agents_pool) == 10
def test_autoscaler_scale_down():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.scale_down()
assert len(autoscaler.agents_pool) == 4
@patch("swarms.swarms.AutoScaler.scale_up")
@patch("swarms.swarms.AutoScaler.scale_down")
def test_autoscaler_monitor_and_scale(mock_scale_down, mock_scale_up):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.monitor_and_scale()
mock_scale_up.assert_called_once()
mock_scale_down.assert_called_once()
@patch("swarms.swarms.AutoScaler.monitor_and_scale")
@patch("swarms.swarms.agent.run")
def test_autoscaler_start(mock_run, mock_monitor_and_scale):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.start()
mock_run.assert_called_once()
mock_monitor_and_scale.assert_called_once()
def test_autoscaler_del_agent():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.del_agent()
assert len(autoscaler.agents_pool) == 4

@ -0,0 +1,64 @@
import torch
import logging
from swarms.utils import check_device
# For the purpose of the test, we're assuming that the `memory_allocated`
# and `memory_reserved` function behave the same as `torch.cuda.memory_allocated`
# and `torch.cuda.memory_reserved`
def test_check_device_no_cuda(monkeypatch):
# Mock torch.cuda.is_available to always return False
monkeypatch.setattr(torch.cuda, "is_available", lambda: False)
result = check_device(log_level=logging.DEBUG)
assert result.type == "cpu"
def test_check_device_cuda_exception(monkeypatch):
# Mock torch.cuda.is_available to raise an exception
monkeypatch.setattr(
torch.cuda, "is_available", lambda: 1 / 0
) # Raises ZeroDivisionError
result = check_device(log_level=logging.DEBUG)
assert result.type == "cpu"
def test_check_device_one_cuda(monkeypatch):
# Mock torch.cuda.is_available to return True
monkeypatch.setattr(torch.cuda, "is_available", lambda: True)
# Mock torch.cuda.device_count to return 1
monkeypatch.setattr(torch.cuda, "device_count", lambda: 1)
# Mock torch.cuda.memory_allocated and torch.cuda.memory_reserved to return 0
monkeypatch.setattr(
torch.cuda, "memory_allocated", lambda device: 0
)
monkeypatch.setattr(
torch.cuda, "memory_reserved", lambda device: 0
)
result = check_device(log_level=logging.DEBUG)
assert len(result) == 1
assert result[0].type == "cuda"
assert result[0].index == 0
def test_check_device_multiple_cuda(monkeypatch):
# Mock torch.cuda.is_available to return True
monkeypatch.setattr(torch.cuda, "is_available", lambda: True)
# Mock torch.cuda.device_count to return 4
monkeypatch.setattr(torch.cuda, "device_count", lambda: 4)
# Mock torch.cuda.memory_allocated and torch.cuda.memory_reserved to return 0
monkeypatch.setattr(
torch.cuda, "memory_allocated", lambda device: 0
)
monkeypatch.setattr(
torch.cuda, "memory_reserved", lambda device: 0
)
result = check_device(log_level=logging.DEBUG)
assert len(result) == 4
for i in range(4):
assert result[i].type == "cuda"
assert result[i].index == i

@ -2,11 +2,9 @@ import pytest
from io import StringIO from io import StringIO
from contextlib import redirect_stdout from contextlib import redirect_stdout
from swarms.utils.class_args_wrapper import print_class_parameters from swarms.utils.class_args_wrapper import print_class_parameters
from swarms.structs import Agent, Autoscaler from swarms.structs.agent import Agent
from fastapi import FastAPI from fastapi import FastAPI
from fastapi.testclient import TestClient from fastapi.testclient import TestClient
from swarms.utils.class_args_wrapper import print_class_parameters
from swarms.structs import Agent, Autoscaler
app = FastAPI() app = FastAPI()
@ -24,19 +22,6 @@ def test_print_class_parameters_agent():
assert output == expected_output assert output == expected_output
def test_print_class_parameters_autoscaler():
f = StringIO()
with redirect_stdout(f):
print_class_parameters(Autoscaler)
output = f.getvalue().strip()
# Replace with the expected output for Autoscaler class
expected_output = (
"Parameter: min_agents, Type: <class 'int'>\nParameter:"
" max_agents, Type: <class 'int'>"
)
assert output == expected_output
def test_print_class_parameters_error(): def test_print_class_parameters_error():
with pytest.raises(TypeError): with pytest.raises(TypeError):
print_class_parameters("Not a class") print_class_parameters("Not a class")
@ -44,7 +29,7 @@ def test_print_class_parameters_error():
@app.get("/parameters/{class_name}") @app.get("/parameters/{class_name}")
def get_parameters(class_name: str): def get_parameters(class_name: str):
classes = {"Agent": Agent, "Autoscaler": Autoscaler} classes = {"Agent": Agent}
if class_name in classes: if class_name in classes:
return print_class_parameters( return print_class_parameters(
classes[class_name], api_format=True classes[class_name], api_format=True
@ -64,17 +49,6 @@ def test_get_parameters_agent():
assert response.json() == expected_output assert response.json() == expected_output
def test_get_parameters_autoscaler():
response = client.get("/parameters/Autoscaler")
assert response.status_code == 200
# Replace with the expected output for Autoscaler class
expected_output = {
"min_agents": "<class 'int'>",
"max_agents": "<class 'int'>",
}
assert response.json() == expected_output
def test_get_parameters_not_found(): def test_get_parameters_not_found():
response = client.get("/parameters/NonexistentClass") response = client.get("/parameters/NonexistentClass")
assert response.status_code == 200 assert response.status_code == 200

@ -0,0 +1,65 @@
# import necessary modules
import pytest
from swarms.utils import display_markdown_message
from rich.console import Console
from rich.markdown import Markdown
from rich.rule import Rule
from unittest import mock
def test_basic_message():
# Test basic message functionality
with mock.patch.object(Console, "print") as mock_print:
display_markdown_message("This is a test")
mock_print.assert_called_once_with(
Markdown("This is a test", style="cyan")
)
def test_empty_message():
# Test how function handles empty input
with mock.patch.object(Console, "print") as mock_print:
display_markdown_message("")
mock_print.assert_called_once_with("")
@pytest.mark.parametrize("color", ["cyan", "red", "blue"])
def test_colors(color):
# Test different colors
with mock.patch.object(Console, "print") as mock_print:
display_markdown_message("This is a test", color)
mock_print.assert_called_once_with(
Markdown("This is a test", style=color)
)
def test_dash_line():
# Test how function handles "---"
with mock.patch.object(Console, "print") as mock_print:
display_markdown_message("---")
mock_print.assert_called_once_with(Rule(style="cyan"))
def test_message_with_whitespace():
# Test how function handles message with whitespaces
with mock.patch.object(Console, "print") as mock_print:
display_markdown_message(" \n Test \n --- \n Test \n")
calls = [
mock.call(""),
mock.call(Markdown("Test", style="cyan")),
mock.call(Rule(style="cyan")),
mock.call(Markdown("Test", style="cyan")),
mock.call(""),
]
mock_print.assert_has_calls(calls)
def test_message_start_with_greater_than():
# Test how function handles message line starting with ">"
with mock.patch.object(Console, "print") as mock_print:
display_markdown_message(">This is a test")
calls = [
mock.call(Markdown(">This is a test", style="cyan")),
mock.call(""),
]
mock_print.assert_has_calls(calls)

@ -0,0 +1,47 @@
import pytest
from swarms.utils import extract_code_from_markdown
@pytest.fixture
def markdown_content_with_code():
return """
# This is a markdown document
Some intro text here.
Some additional text.
"""
@pytest.fixture
def markdown_content_without_code():
return """
# This is a markdown document
There is no code in this document.
"""
def test_extract_code_from_markdown_with_code(
markdown_content_with_code,
):
extracted_code = extract_code_from_markdown(
markdown_content_with_code
)
assert "def my_func():" in extracted_code
assert 'print("This is my function.")' in extracted_code
assert "class MyClass:" in extracted_code
assert "pass" in extracted_code
def test_extract_code_from_markdown_without_code(
markdown_content_without_code,
):
extracted_code = extract_code_from_markdown(
markdown_content_without_code
)
assert extracted_code == ""
def test_extract_code_from_markdown_exception():
with pytest.raises(TypeError):
extract_code_from_markdown(None)

@ -0,0 +1,52 @@
# Filename: test_utils.py
import pytest
from swarms.utils import find_image_path
import os
def test_find_image_path_no_images():
assert (
find_image_path(
"This is a test string without any image paths."
)
is None
)
def test_find_image_path_one_image():
text = "This is a string with one image path: sample_image.jpg."
assert find_image_path(text) == "sample_image.jpg"
def test_find_image_path_multiple_images():
text = "This string has two image paths: img1.png, and img2.jpg."
assert (
find_image_path(text) == "img2.jpg"
) # Assuming both images exist
def test_find_image_path_wrong_input():
with pytest.raises(TypeError):
find_image_path(123)
@pytest.mark.parametrize(
"text, expected",
[
("no image path here", None),
("image: sample.png", "sample.png"),
("image: sample.png, another: another.jpeg", "another.jpeg"),
],
)
def test_find_image_path_parameterized(text, expected):
assert find_image_path(text) == expected
def mock_os_path_exists(path):
return True
def test_find_image_path_mocking(monkeypatch):
monkeypatch.setattr(os.path, "exists", mock_os_path_exists)
assert find_image_path("image.jpg") == "image.jpg"

@ -0,0 +1,45 @@
import pytest
from swarms.utils import limit_tokens_from_string
def test_limit_tokens_from_string():
sentence = (
"This is a test sentence. It is used for testing the number"
" of tokens."
)
limited = limit_tokens_from_string(sentence, limit=5)
assert (
len(limited.split()) <= 5
), "The output string has more than 5 tokens."
def test_limit_zero_tokens():
sentence = "Expect empty result when limit is set to zero."
limited = limit_tokens_from_string(sentence, limit=0)
assert limited == "", "The output is not empty."
def test_negative_token_limit():
sentence = (
"This test will raise an exception when limit is negative."
)
with pytest.raises(Exception):
limit_tokens_from_string(sentence, limit=-1)
@pytest.mark.parametrize(
"sentence, model", [("Some sentence", "unavailable-model")]
)
def test_unknown_model(sentence, model):
with pytest.raises(Exception):
limit_tokens_from_string(sentence, model=model)
def test_string_token_limit_exceeded():
sentence = (
"This is a long sentence with more than twenty tokens which"
" is used for testing. It checks whether the function"
" correctly limits the tokens to a specified amount."
)
limited = limit_tokens_from_string(sentence, limit=20)
assert len(limited.split()) <= 20, "The token limit is exceeded."

@ -0,0 +1,111 @@
import pytest
import torch
from torch import nn
from swarms.utils import load_model_torch
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(10, 2)
def forward(self, x):
return self.fc(x)
# Test case 1: Test if model can be loaded successfully
def test_load_model_torch_success(tmp_path):
model = DummyModel()
# Save the model to a temporary directory
model_path = tmp_path / "model.pt"
torch.save(model.state_dict(), model_path)
# Load the model
model_loaded = load_model_torch(model_path, model=DummyModel())
# Check if loaded model has the same architecture
assert isinstance(
model_loaded, DummyModel
), "Loaded model type mismatch."
# Test case 2: Test if function raises FileNotFoundError for non-existent file
def test_load_model_torch_file_not_found():
with pytest.raises(FileNotFoundError):
load_model_torch("non_existent_model.pt")
# Test case 3: Test if function catches and raises RuntimeError for invalid model file
def test_load_model_torch_invalid_file(tmp_path):
file = tmp_path / "invalid_model.pt"
file.write_text("Invalid model file.")
with pytest.raises(RuntimeError):
load_model_torch(file)
# Test case 4: Test for handling of 'strict' parameter
def test_load_model_torch_strict_handling(tmp_path):
# Create a model and modify it to cause a mismatch
model = DummyModel()
model.fc = nn.Linear(10, 3)
model_path = tmp_path / "model.pt"
torch.save(model.state_dict(), model_path)
# Try to load the modified model with 'strict' parameter set to True
with pytest.raises(RuntimeError):
load_model_torch(model_path, model=DummyModel(), strict=True)
# Test case 5: Test for 'device' parameter handling
def test_load_model_torch_device_handling(tmp_path):
model = DummyModel()
model_path = tmp_path / "model.pt"
torch.save(model.state_dict(), model_path)
# Define a device other than default and load the model to the specified device
device = torch.device("cpu")
model_loaded = load_model_torch(
model_path, model=DummyModel(), device=device
)
assert (
model_loaded.fc.weight.device == device
), "Model not loaded to specified device."
# Test case 6: Testing for correct handling of '*args' and '**kwargs'
def test_load_model_torch_args_kwargs_handling(monkeypatch, tmp_path):
model = DummyModel()
model_path = tmp_path / "model.pt"
torch.save(model.state_dict(), model_path)
def mock_torch_load(*args, **kwargs):
assert (
"pickle_module" in kwargs
), "Keyword arguments not passed to 'torch.load'."
# Monkeypatch 'torch.load' to check if '*args' and '**kwargs' are passed correctly
monkeypatch.setattr(torch, "load", mock_torch_load)
load_model_torch(
model_path, model=DummyModel(), pickle_module="dummy_module"
)
# Test case 7: Test for model loading on CPU if no GPU is available
def test_load_model_torch_cpu(tmp_path):
model = DummyModel()
model_path = tmp_path / "model.pt"
torch.save(model.state_dict(), model_path)
def mock_torch_cuda_is_available():
return False
# Monkeypatch to simulate no GPU available
pytest.MonkeyPatch.setattr(
torch.cuda, "is_available", mock_torch_cuda_is_available
)
model_loaded = load_model_torch(model_path, model=DummyModel())
# Ensure model is loaded on CPU
assert next(model_loaded.parameters()).device.type == "cpu"

@ -1,89 +1,41 @@
import pytest from swarms.utils import math_eval
from swarms.utils.math_eval import math_eval
def test_math_eval_same_output(): def func1_no_exception(x):
@math_eval(lambda x: x + 1, lambda x: x + 1) return x + 2
def func(x):
return x
for i in range(20):
result1, result2 = func(i)
assert result1 == result2
assert result1 == i + 1
def test_math_eval_different_output(): def func2_no_exception(x):
@math_eval(lambda x: x + 1, lambda x: x + 2) return x + 2
def func(x):
return x
for i in range(20):
result1, result2 = func(i)
assert result1 != result2
assert result1 == i + 1
assert result2 == i + 2
def func1_with_exception(x):
raise ValueError()
def test_math_eval_exception_in_func1():
@math_eval(lambda x: 1 / x, lambda x: x)
def func(x):
return x
with pytest.raises(ZeroDivisionError): def func2_with_exception(x):
func(0) raise ValueError()
def test_math_eval_exception_in_func2(): def test_same_results_no_exception(caplog):
@math_eval(lambda x: x, lambda x: 1 / x) @math_eval(func1_no_exception, func2_no_exception)
def func(x): def test_func(x):
return x return x
with pytest.raises(ZeroDivisionError): result1, result2 = test_func(5)
func(0) assert result1 == result2 == 7
assert "Outputs do not match" not in caplog.text
def test_math_eval_with_multiple_arguments():
@math_eval(lambda x, y: x + y, lambda x, y: y + x)
def func(x, y):
return x, y
for i in range(10):
for j in range(10):
result1, result2 = func(i, j)
assert result1 == result2
assert result1 == i + j
def test_math_eval_with_kwargs(): def test_func1_exception(caplog):
@math_eval(lambda x, y=0: x + y, lambda x, y=0: y + x) @math_eval(func1_with_exception, func2_no_exception)
def func(x, y=0): def test_func(x):
return x, y return x
for i in range(10):
for j in range(10):
result1, result2 = func(i, y=j)
assert result1 == result2
assert result1 == i + j
def test_math_eval_with_no_arguments():
@math_eval(lambda: 1, lambda: 1)
def func():
return
result1, result2 = func()
assert result1 == result2
assert result1 == 1
result1, result2 = test_func(5)
assert result1 is None
assert result2 == 7
assert "Error in func1:" in caplog.text
def test_math_eval_with_different_types():
@math_eval(lambda x: str(x), lambda x: x)
def func(x):
return x
for i in range(10): # similar tests for func2_with_exception and when func1 and func2 return different results
result1, result2 = func(i)
assert result1 != result2
assert result1 == str(i)
assert result2 == i

@ -0,0 +1,84 @@
# pytest imports
import pytest
from unittest.mock import Mock
# Imports from your project
from swarms.utils import metrics_decorator
import time
# Basic successful test
def test_metrics_decorator_success():
@metrics_decorator
def decorated_func():
time.sleep(0.1)
return [1, 2, 3, 4, 5]
metrics = decorated_func()
assert "Time to First Token" in metrics
assert "Generation Latency" in metrics
assert "Throughput:" in metrics
@pytest.mark.parametrize(
"wait_time, return_val",
[
(0, []),
(0.1, [1, 2, 3]),
(0.5, list(range(50))),
],
)
def test_metrics_decorator_with_various_wait_times_and_return_vals(
wait_time, return_val
):
@metrics_decorator
def decorated_func():
time.sleep(wait_time)
return return_val
metrics = decorated_func()
assert "Time to First Token" in metrics
assert "Generation Latency" in metrics
assert "Throughput:" in metrics
# Test to ensure that mocked time function was called and throughputs are calculated as expected
def test_metrics_decorator_with_mocked_time(mocker):
mocked_time = Mock()
mocker.patch("time.time", mocked_time)
mocked_time.side_effect = [0, 5, 10, 20]
@metrics_decorator
def decorated_func():
return ["tok_1", "tok_2"]
metrics = decorated_func()
assert metrics == """
Time to First Token: 5
Generation Latency: 20
Throughput: 0.1
"""
mocked_time.assert_any_call()
# Test to ensure that exceptions in the decorated function are propagated
def test_metrics_decorator_raises_exception():
@metrics_decorator
def decorated_func():
raise ValueError("Oops!")
with pytest.raises(ValueError, match="Oops!"):
decorated_func()
# Test to ensure proper handling when decorated function returns non-list value
def test_metrics_decorator_with_non_list_return_val():
@metrics_decorator
def decorated_func():
return "Hello, world!"
metrics = decorated_func()
assert "Time to First Token" in metrics
assert "Generation Latency" in metrics
assert "Throughput:" in metrics

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save