revert-563-dependabot/pip/pymdown-extensions-approx-eq-10.9
Kye Gomez 5 months ago
parent 07f8e371de
commit f6acc4adfd

@ -152,6 +152,7 @@ nav:
- HuggingFaceLLM: "swarms/models/huggingface.md" - HuggingFaceLLM: "swarms/models/huggingface.md"
- Anthropic: "swarms/models/anthropic.md" - Anthropic: "swarms/models/anthropic.md"
- OpenAIChat: "swarms/models/openai.md" - OpenAIChat: "swarms/models/openai.md"
- OpenAIFunctionCaller: "swarms/models/openai_function_caller.md"
# - TogetherAI: "swarms/models/togetherai.md" # - TogetherAI: "swarms/models/togetherai.md"
- MultiModal Models: - MultiModal Models:
- BaseMultiModalModel: "swarms/models/base_multimodal_model.md" - BaseMultiModalModel: "swarms/models/base_multimodal_model.md"

@ -44,14 +44,14 @@ CFO = Agent(
agent_name="CFO", agent_name="CFO",
system_prompt="Give your opinion on the financial performance of the company.", system_prompt="Give your opinion on the financial performance of the company.",
agent_description=( agent_description=(
"the top financial executive in an organization, overseeing all financial operations and strategy. Their role is broader than a treasurer's and includes:\n" "the top financial executive in an organization, overseeing all financial operations and strategy. Their role is broader than a treasurer's and includes:\n"
"Financial planning and analysis\n" "Financial planning and analysis\n"
"Accounting and financial reporting\n" "Accounting and financial reporting\n"
"Budgeting and forecasting\n" "Budgeting and forecasting\n"
"Strategic financial decision-making\n" "Strategic financial decision-making\n"
"Compliance and risk management\n" "Compliance and risk management\n"
"Investor relations (in public companies)\n" "Investor relations (in public companies)\n"
"Overseeing the finance and accounting departments" "Overseeing the finance and accounting departments"
), ),
llm=OpenAIChat(), llm=OpenAIChat(),
max_loops=1, max_loops=1,
@ -63,23 +63,24 @@ swarm = AgentRearrange(
flow="Treasurer -> CFO", flow="Treasurer -> CFO",
) )
results = swarm.run("Date,Revenue,Expenses,Profit,Cash_Flow,Inventory,Customer_Acquisition_Cost,Customer_Retention_Rate,Marketing_Spend,R&D_Spend,Debt,Assets\n" results = swarm.run(
"2023-01-01,1000000,800000,200000,150000,500000,100,0.85,50000,100000,2000000,5000000\n" "Date,Revenue,Expenses,Profit,Cash_Flow,Inventory,Customer_Acquisition_Cost,Customer_Retention_Rate,Marketing_Spend,R&D_Spend,Debt,Assets\n"
"2023-02-01,1050000,820000,230000,180000,520000,95,0.87,55000,110000,1950000,5100000\n" "2023-01-01,1000000,800000,200000,150000,500000,100,0.85,50000,100000,2000000,5000000\n"
"2023-03-01,1100000,850000,250000,200000,530000,90,0.88,60000,120000,1900000,5200000\n" "2023-02-01,1050000,820000,230000,180000,520000,95,0.87,55000,110000,1950000,5100000\n"
"2023-04-01,1200000,900000,300000,250000,550000,85,0.90,70000,130000,1850000,5400000\n" "2023-03-01,1100000,850000,250000,200000,530000,90,0.88,60000,120000,1900000,5200000\n"
"2023-05-01,1300000,950000,350000,300000,580000,80,0.92,80000,140000,1800000,5600000\n" "2023-04-01,1200000,900000,300000,250000,550000,85,0.90,70000,130000,1850000,5400000\n"
"2023-06-01,1400000,1000000,400000,350000,600000,75,0.93,90000,150000,1750000,5800000\n" "2023-05-01,1300000,950000,350000,300000,580000,80,0.92,80000,140000,1800000,5600000\n"
"2023-07-01,1450000,1050000,400000,320000,620000,78,0.91,95000,160000,1700000,5900000\n" "2023-06-01,1400000,1000000,400000,350000,600000,75,0.93,90000,150000,1750000,5800000\n"
"2023-08-01,1500000,1100000,400000,300000,650000,80,0.90,100000,170000,1650000,6000000\n" "2023-07-01,1450000,1050000,400000,320000,620000,78,0.91,95000,160000,1700000,5900000\n"
"2023-09-01,1550000,1150000,400000,280000,680000,82,0.89,105000,180000,1600000,6100000\n" "2023-08-01,1500000,1100000,400000,300000,650000,80,0.90,100000,170000,1650000,6000000\n"
"2023-10-01,1600000,1200000,400000,260000,700000,85,0.88,110000,190000,1550000,6200000\n" "2023-09-01,1550000,1150000,400000,280000,680000,82,0.89,105000,180000,1600000,6100000\n"
"2023-11-01,1650000,1250000,400000,240000,720000,88,0.87,115000,200000,1500000,6300000\n" "2023-10-01,1600000,1200000,400000,260000,700000,85,0.88,110000,190000,1550000,6200000\n"
"2023-12-01,1700000,1300000,400000,220000,750000,90,0.86,120000,210000,1450000,6400000\n" "2023-11-01,1650000,1250000,400000,240000,720000,88,0.87,115000,200000,1500000,6300000\n"
"2024-01-01,1500000,1200000,300000,180000,780000,95,0.84,100000,180000,1500000,6300000\n" "2023-12-01,1700000,1300000,400000,220000,750000,90,0.86,120000,210000,1450000,6400000\n"
"2024-02-01,1550000,1220000,330000,200000,760000,92,0.85,105000,185000,1480000,6350000\n" "2024-01-01,1500000,1200000,300000,180000,780000,95,0.84,100000,180000,1500000,6300000\n"
"2024-03-01,1600000,1240000,360000,220000,740000,89,0.86,110000,190000,1460000,6400000\n" "2024-02-01,1550000,1220000,330000,200000,760000,92,0.85,105000,185000,1480000,6350000\n"
"2024-04-01,1650000,1260000,390000,240000,720000,86,0.87,115000,195000,1440000,6450000\n" "2024-03-01,1600000,1240000,360000,220000,740000,89,0.86,110000,190000,1460000,6400000\n"
"2024-05-01,1700000,1280000,420000,260000,700000,83,0.88,120000,200000,1420000,6500000\n" "2024-04-01,1650000,1260000,390000,240000,720000,86,0.87,115000,195000,1440000,6450000\n"
"2024-06-01,1750000,1300000,450000,280000,680000,80,0.89,125000,205000,1400000,6550000" "2024-05-01,1700000,1280000,420000,260000,700000,83,0.88,120000,200000,1420000,6500000\n"
) "2024-06-01,1750000,1300000,450000,280000,680000,80,0.89,125000,205000,1400000,6550000"
)

@ -27,6 +27,7 @@ sys.path.insert(0, os.getcwd())
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from agentops import record_function from agentops import record_function
# Add agentops decorator on your tools # Add agentops decorator on your tools
@record_function("length_checker") @record_function("length_checker")
def length_checker(string: str) -> int: def length_checker(string: str) -> int:
@ -41,6 +42,7 @@ def length_checker(string: str) -> int:
""" """
return len(string) return len(string)
agent1 = Agent( agent1 = Agent(
agent_name="lengther", agent_name="lengther",
system_prompt="return the length of the string", system_prompt="return the length of the string",

@ -91,6 +91,7 @@ def step_id():
agent_output_type = Union[BaseModel, dict, str] agent_output_type = Union[BaseModel, dict, str]
ToolUsageType = Union[BaseModel, Dict[str, Any]] ToolUsageType = Union[BaseModel, Dict[str, Any]]
# [FEAT][AGENT] # [FEAT][AGENT]
@agentops.track_agent() @agentops.track_agent()
class Agent(BaseStructure): class Agent(BaseStructure):

@ -224,7 +224,11 @@ class AgentRearrange(BaseSwarm):
else: else:
agent = self.agents[agent_name] agent = self.agents[agent_name]
result = agent.run( result = agent.run(
current_task, img, is_last, *args, **kwargs current_task,
img,
is_last,
*args,
**kwargs,
) )
results.append(result) results.append(result)
@ -324,13 +328,22 @@ class AgentRearrange(BaseSwarm):
results = [] results = []
for agent_name in agent_names: for agent_name in agent_names:
result = self.process_agent_or_swarm( result = self.process_agent_or_swarm(
agent_name, current_task, img, is_last*args, **kwargs agent_name,
current_task,
img,
is_last * args,
**kwargs,
) )
results.append(result) results.append(result)
current_task = "; ".join(results) current_task = "; ".join(results)
else: else:
current_task = self.process_agent_or_swarm( current_task = self.process_agent_or_swarm(
agent_names[0], current_task, is_last, img, *args, **kwargs agent_names[0],
current_task,
is_last,
img,
*args,
**kwargs,
) )
return current_task return current_task

@ -30,7 +30,11 @@ def parse_and_execute_json(
function_dict = {func.__name__: func for func in functions} function_dict = {func.__name__: func for func in functions}
data = json.loads(json_string) data = json.loads(json_string)
function_list = data.get("functions", []) if data.get("functions") else [data.get("function", [])] function_list = (
data.get("functions", [])
if data.get("functions")
else [data.get("function", [])]
)
results = {} results = {}
for function_data in function_list: for function_data in function_list:

Loading…
Cancel
Save