Merge 7d68229fee
into 75049e82a3
commit
f7101c100a
@ -0,0 +1,559 @@
|
||||
from typing import List
|
||||
from loguru import logger
|
||||
from swarms.structs.agent import Agent
|
||||
from swarms.structs.conversation import Conversation
|
||||
from swarms.utils.history_output_formatter import history_output_formatter
|
||||
from swarms_tools import exa_search
|
||||
|
||||
# System prompts for each agent
|
||||
INTAKE_AGENT_PROMPT = """
|
||||
You are an M&A Intake Specialist responsible for gathering comprehensive information about a potential transaction.
|
||||
|
||||
ROLE:
|
||||
Engage with the user to understand the full context of the potential M&A deal, extracting critical details that will guide subsequent analyses.
|
||||
|
||||
RESPONSIBILITIES:
|
||||
- Conduct a thorough initial interview to understand:
|
||||
* Transaction type (acquisition, merger, divestiture)
|
||||
* Industry and sector specifics
|
||||
* Target company profile and size
|
||||
* Strategic objectives
|
||||
* Buyer/seller perspective
|
||||
* Timeline and urgency
|
||||
* Budget constraints
|
||||
* Specific concerns or focus areas
|
||||
|
||||
OUTPUT FORMAT:
|
||||
Provide a comprehensive Deal Brief that includes:
|
||||
1. Transaction Overview
|
||||
- Proposed transaction type
|
||||
- Key parties involved
|
||||
- Initial strategic rationale
|
||||
|
||||
2. Stakeholder Context
|
||||
- Buyer's background and motivations
|
||||
- Target company's current position
|
||||
- Key decision-makers
|
||||
|
||||
3. Initial Assessment
|
||||
- Preliminary strategic fit
|
||||
- Potential challenges or red flags
|
||||
- Recommended focus areas for deeper analysis
|
||||
|
||||
4. Information Gaps
|
||||
- Questions that need further clarification
|
||||
- Additional data points required
|
||||
|
||||
IMPORTANT:
|
||||
- Be thorough and systematic
|
||||
- Ask probing questions to uncover nuanced details
|
||||
- Maintain a neutral, professional tone
|
||||
- Prepare a foundation for subsequent in-depth analysis
|
||||
"""
|
||||
|
||||
MARKET_ANALYSIS_PROMPT = """
|
||||
You are an M&A Market Intelligence Analyst tasked with conducting comprehensive market research.
|
||||
|
||||
ROLE:
|
||||
Perform an in-depth analysis of market dynamics, competitive landscape, and strategic implications for the potential transaction.
|
||||
|
||||
TOOLS:
|
||||
You have access to the exa_search tool for gathering real-time market intelligence.
|
||||
|
||||
RESPONSIBILITIES:
|
||||
1. Conduct Market Research
|
||||
- Use exa_search to gather current market insights
|
||||
- Analyze industry trends, size, and growth potential
|
||||
- Identify key players and market share distribution
|
||||
|
||||
2. Competitive Landscape Analysis
|
||||
- Map out competitive ecosystem
|
||||
- Assess target company's market positioning
|
||||
- Identify potential competitive advantages or vulnerabilities
|
||||
|
||||
3. Strategic Fit Evaluation
|
||||
- Analyze alignment with buyer's strategic objectives
|
||||
- Assess potential market entry or expansion opportunities
|
||||
- Evaluate potential for market disruption
|
||||
|
||||
4. External Factor Assessment
|
||||
- Examine regulatory environment
|
||||
- Analyze technological disruption potential
|
||||
- Consider macroeconomic impacts
|
||||
|
||||
OUTPUT FORMAT:
|
||||
Provide a comprehensive Market Analysis Report:
|
||||
1. Market Overview
|
||||
- Market size and growth trajectory
|
||||
- Key industry trends
|
||||
- Competitive landscape summary
|
||||
|
||||
2. Strategic Fit Assessment
|
||||
- Market attractiveness score (1-10)
|
||||
- Strategic alignment evaluation
|
||||
- Potential synergies and opportunities
|
||||
|
||||
3. Risk and Opportunity Mapping
|
||||
- Key market opportunities
|
||||
- Potential competitive threats
|
||||
- Regulatory and technological risk factors
|
||||
|
||||
4. Recommended Next Steps
|
||||
- Areas requiring deeper investigation
|
||||
- Initial strategic recommendations
|
||||
"""
|
||||
|
||||
FINANCIAL_VALUATION_PROMPT = """
|
||||
You are an M&A Financial Analysis and Risk Expert. Perform comprehensive financial evaluation and risk assessment.
|
||||
|
||||
RESPONSIBILITIES:
|
||||
1. Financial Health Analysis
|
||||
- Analyze revenue trends and quality
|
||||
- Evaluate profitability metrics (EBITDA, margins)
|
||||
- Conduct cash flow analysis
|
||||
- Assess balance sheet strength
|
||||
- Review working capital requirements
|
||||
|
||||
2. Valuation Analysis
|
||||
- Perform comparable company analysis
|
||||
- Conduct precedent transaction analysis
|
||||
- Develop Discounted Cash Flow (DCF) model
|
||||
- Assess asset-based valuation
|
||||
|
||||
3. Synergy and Risk Assessment
|
||||
- Quantify potential revenue and cost synergies
|
||||
- Identify financial and operational risks
|
||||
- Evaluate integration complexity
|
||||
- Assess potential deal-breakers
|
||||
|
||||
OUTPUT FORMAT:
|
||||
1. Comprehensive Financial Analysis Report
|
||||
2. Valuation Range (low, mid, high scenarios)
|
||||
3. Synergy Potential Breakdown
|
||||
4. Detailed Risk Matrix
|
||||
5. Recommended Pricing Strategy
|
||||
"""
|
||||
|
||||
DEAL_STRUCTURING_PROMPT = """
|
||||
You are an M&A Deal Structuring Advisor. Recommend the optimal transaction structure.
|
||||
|
||||
RESPONSIBILITIES:
|
||||
1. Transaction Structure Design
|
||||
- Evaluate asset vs stock purchase options
|
||||
- Analyze cash vs stock consideration
|
||||
- Design earnout provisions
|
||||
- Develop contingent payment structures
|
||||
|
||||
2. Financing Strategy
|
||||
- Recommend debt/equity mix
|
||||
- Identify optimal financing sources
|
||||
- Assess impact on buyer's capital structure
|
||||
|
||||
3. Tax and Legal Optimization
|
||||
- Design tax-efficient structure
|
||||
- Consider jurisdictional implications
|
||||
- Minimize tax liabilities
|
||||
|
||||
4. Deal Protection Mechanisms
|
||||
- Develop escrow arrangements
|
||||
- Design representations and warranties
|
||||
- Create indemnification provisions
|
||||
- Recommend non-compete agreements
|
||||
|
||||
OUTPUT FORMAT:
|
||||
1. Recommended Deal Structure
|
||||
2. Detailed Payment Terms
|
||||
3. Key Contractual Protections
|
||||
4. Tax Optimization Strategy
|
||||
5. Rationale for Proposed Structure
|
||||
"""
|
||||
|
||||
INTEGRATION_PLANNING_PROMPT = """
|
||||
You are an M&A Integration Planning Expert. Develop a comprehensive post-merger integration roadmap.
|
||||
|
||||
RESPONSIBILITIES:
|
||||
1. Immediate Integration Priorities
|
||||
- Define critical day-1 actions
|
||||
- Develop communication strategy
|
||||
- Identify quick win opportunities
|
||||
|
||||
2. 100-Day Integration Plan
|
||||
- Design organizational structure alignment
|
||||
- Establish governance framework
|
||||
- Create detailed integration milestones
|
||||
|
||||
3. Functional Integration Strategy
|
||||
- Plan operations consolidation
|
||||
- Design systems and technology integration
|
||||
- Align sales and marketing approaches
|
||||
- Develop cultural integration plan
|
||||
|
||||
4. Synergy Realization
|
||||
- Create detailed synergy capture timeline
|
||||
- Establish performance tracking mechanisms
|
||||
- Define accountability framework
|
||||
|
||||
OUTPUT FORMAT:
|
||||
1. Comprehensive Integration Roadmap
|
||||
2. Detailed 100-Day Plan
|
||||
3. Functional Integration Strategies
|
||||
4. Synergy Realization Timeline
|
||||
5. Risk Mitigation Recommendations
|
||||
"""
|
||||
|
||||
FINAL_RECOMMENDATION_PROMPT = """
|
||||
You are the Senior M&A Advisory Partner. Synthesize all analyses into a comprehensive recommendation.
|
||||
|
||||
RESPONSIBILITIES:
|
||||
1. Executive Summary
|
||||
- Summarize transaction overview
|
||||
- Highlight strategic rationale
|
||||
- Articulate key value drivers
|
||||
|
||||
2. Investment Thesis Validation
|
||||
- Assess strategic benefits
|
||||
- Evaluate financial attractiveness
|
||||
- Project long-term potential
|
||||
|
||||
3. Comprehensive Risk Assessment
|
||||
- Summarize top risks
|
||||
- Provide mitigation strategies
|
||||
- Identify potential deal-breakers
|
||||
|
||||
4. Final Recommendation
|
||||
- Provide clear GO/NO-GO recommendation
|
||||
- Specify recommended offer range
|
||||
- Outline key proceeding conditions
|
||||
|
||||
OUTPUT FORMAT:
|
||||
1. Executive-Level Recommendation Report
|
||||
2. Decision Framework
|
||||
3. Risk-Adjusted Strategic Perspective
|
||||
4. Actionable Next Steps
|
||||
5. Recommendation Confidence Level
|
||||
"""
|
||||
|
||||
class MAAdvisorySwarm:
|
||||
def __init__(
|
||||
self,
|
||||
name: str = "M&A Advisory Swarm",
|
||||
description: str = "Comprehensive AI-driven M&A advisory system",
|
||||
max_loops: int = 1,
|
||||
user_name: str = "M&A Advisor",
|
||||
output_type: str = "json",
|
||||
):
|
||||
self.max_loops = max_loops
|
||||
self.name = name
|
||||
self.description = description
|
||||
self.user_name = user_name
|
||||
self.output_type = output_type
|
||||
|
||||
self.agents = self._initialize_agents()
|
||||
self.conversation = Conversation()
|
||||
self.exa_search_results = []
|
||||
self.search_queries = []
|
||||
self.current_iteration = 0
|
||||
self.max_iterations = 1 # Limiting to 1 iteration for full sequential demo
|
||||
self.analysis_concluded = False
|
||||
|
||||
self.handle_initial_processing()
|
||||
|
||||
def handle_initial_processing(self):
|
||||
self.conversation.add(
|
||||
role="System",
|
||||
content=f"Company: {self.name}\n"
|
||||
f"Description: {self.description}\n"
|
||||
f"Mission: Provide comprehensive M&A advisory for {self.user_name}"
|
||||
)
|
||||
|
||||
def _initialize_agents(self) -> List[Agent]:
|
||||
return [
|
||||
Agent(
|
||||
agent_name="Emma-Intake-Specialist",
|
||||
agent_description="Gathers comprehensive initial information about the potential M&A transaction.",
|
||||
system_prompt=INTAKE_AGENT_PROMPT,
|
||||
max_loops=self.max_loops,
|
||||
dynamic_temperature_enabled=True,
|
||||
output_type="final",
|
||||
),
|
||||
Agent(
|
||||
agent_name="Marcus-Market-Analyst",
|
||||
agent_description="Conducts in-depth market research and competitive analysis.",
|
||||
system_prompt=MARKET_ANALYSIS_PROMPT,
|
||||
max_loops=self.max_loops,
|
||||
dynamic_temperature_enabled=True,
|
||||
output_type="final",
|
||||
),
|
||||
Agent(
|
||||
agent_name="Sophia-Financial-Analyst",
|
||||
agent_description="Performs comprehensive financial valuation and risk assessment.",
|
||||
system_prompt=FINANCIAL_VALUATION_PROMPT,
|
||||
max_loops=self.max_loops,
|
||||
dynamic_temperature_enabled=True,
|
||||
output_type="final",
|
||||
),
|
||||
Agent(
|
||||
agent_name="David-Deal-Structuring-Advisor",
|
||||
agent_description="Recommends optimal deal structure and terms.",
|
||||
system_prompt=DEAL_STRUCTURING_PROMPT,
|
||||
max_loops=self.max_loops,
|
||||
dynamic_temperature_enabled=True,
|
||||
output_type="final",
|
||||
),
|
||||
Agent(
|
||||
agent_name="Nathan-Integration-Planner",
|
||||
agent_description="Develops comprehensive post-merger integration roadmap.",
|
||||
system_prompt=INTEGRATION_PLANNING_PROMPT,
|
||||
max_loops=self.max_loops,
|
||||
dynamic_temperature_enabled=True,
|
||||
output_type="final",
|
||||
),
|
||||
Agent(
|
||||
agent_name="Alex-Final-Recommendation-Partner",
|
||||
agent_description="Synthesizes all analyses into a comprehensive recommendation.",
|
||||
system_prompt=FINAL_RECOMMENDATION_PROMPT,
|
||||
max_loops=self.max_loops,
|
||||
dynamic_temperature_enabled=True,
|
||||
output_type="final",
|
||||
)
|
||||
]
|
||||
|
||||
def find_agent_by_name(self, name: str) -> Agent:
|
||||
for agent in self.agents:
|
||||
if name in agent.agent_name:
|
||||
return agent
|
||||
return None
|
||||
|
||||
def intake_and_scoping(self, user_input: str):
|
||||
"""Phase 1: Intake and initial deal scoping"""
|
||||
emma_agent = self.find_agent_by_name("Intake-Specialist")
|
||||
|
||||
emma_output = emma_agent.run(
|
||||
f"User Input: {user_input}\n\n"
|
||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
||||
f"Analyze the potential M&A transaction, extract key details, and prepare a comprehensive deal brief. "
|
||||
f"If information is unclear, ask clarifying questions."
|
||||
)
|
||||
|
||||
self.conversation.add(
|
||||
role="Intake-Specialist", content=emma_output
|
||||
)
|
||||
|
||||
# Extract potential search queries for market research
|
||||
self.search_queries = self._extract_search_queries(emma_output)
|
||||
|
||||
return emma_output
|
||||
|
||||
def _extract_search_queries(self, intake_output: str) -> List[str]:
|
||||
"""Extract search queries from Intake Specialist output"""
|
||||
queries = []
|
||||
lines = intake_output.split('\n')
|
||||
|
||||
# Look for lines that could be good search queries
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
# Simple heuristic: lines with potential research keywords
|
||||
if any(keyword in line.lower() for keyword in ['market', 'industry', 'trend', 'competitor', 'analysis']):
|
||||
if len(line) > 20: # Ensure query is substantial
|
||||
queries.append(line)
|
||||
|
||||
# Fallback queries if none found
|
||||
if not queries:
|
||||
queries = [
|
||||
"M&A trends in technology sector",
|
||||
"Market analysis for potential business acquisition",
|
||||
"Competitive landscape in enterprise software"
|
||||
]
|
||||
|
||||
return queries[:3] # Limit to 3 queries
|
||||
|
||||
def market_research(self):
|
||||
"""Phase 2: Conduct market research using exa_search"""
|
||||
# Execute exa_search for each query
|
||||
self.exa_search_results = []
|
||||
for query in self.search_queries:
|
||||
result = exa_search(query)
|
||||
self.exa_search_results.append({
|
||||
"query": query,
|
||||
"exa_result": result
|
||||
})
|
||||
|
||||
# Pass results to Market Analysis agent
|
||||
marcus_agent = self.find_agent_by_name("Market-Analyst")
|
||||
|
||||
# Build exa context
|
||||
exa_context = "\n\n[Exa Market Research Results]\n"
|
||||
for item in self.exa_search_results:
|
||||
exa_context += f"Query: {item['query']}\nResults: {item['exa_result']}\n\n"
|
||||
|
||||
marcus_output = marcus_agent.run(
|
||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
||||
f"{exa_context}\n"
|
||||
f"Analyze these market research results. Provide comprehensive market intelligence and strategic insights."
|
||||
)
|
||||
|
||||
self.conversation.add(
|
||||
role="Market-Analyst", content=marcus_output
|
||||
)
|
||||
|
||||
return marcus_output
|
||||
|
||||
def financial_valuation(self):
|
||||
"""Phase 3: Perform comprehensive financial valuation and risk assessment"""
|
||||
sophia_agent = self.find_agent_by_name("Financial-Analyst")
|
||||
|
||||
sophia_output = sophia_agent.run(
|
||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
||||
f"Perform comprehensive financial analysis and risk assessment based on previous insights."
|
||||
)
|
||||
|
||||
self.conversation.add(
|
||||
role="Financial-Analyst", content=sophia_output
|
||||
)
|
||||
|
||||
return sophia_output
|
||||
|
||||
def deal_structuring(self):
|
||||
"""Phase 4: Recommend optimal deal structure"""
|
||||
david_agent = self.find_agent_by_name("Deal-Structuring-Advisor")
|
||||
|
||||
david_output = david_agent.run(
|
||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
||||
f"Recommend the optimal transaction structure and terms based on all prior analyses."
|
||||
)
|
||||
|
||||
self.conversation.add(
|
||||
role="Deal-Structuring-Advisor", content=david_output
|
||||
)
|
||||
|
||||
return david_output
|
||||
|
||||
def integration_planning(self):
|
||||
"""Phase 5: Develop post-merger integration roadmap"""
|
||||
nathan_agent = self.find_agent_by_name("Integration-Planner")
|
||||
|
||||
nathan_output = nathan_agent.run(
|
||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
||||
f"Create a comprehensive integration plan to realize deal value."
|
||||
)
|
||||
|
||||
self.conversation.add(
|
||||
role="Integration-Planner", content=nathan_output
|
||||
)
|
||||
|
||||
return nathan_output
|
||||
|
||||
def final_recommendation(self):
|
||||
"""Phase 6: Synthesize all analyses into a comprehensive recommendation"""
|
||||
alex_agent = self.find_agent_by_name("Final-Recommendation-Partner")
|
||||
|
||||
alex_output = alex_agent.run(
|
||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
||||
f"Synthesize all agent analyses into a comprehensive, actionable M&A recommendation."
|
||||
)
|
||||
|
||||
self.conversation.add(
|
||||
role="Final-Recommendation-Partner", content=alex_output
|
||||
)
|
||||
|
||||
return alex_output
|
||||
|
||||
|
||||
def run(self, initial_user_input: str):
|
||||
"""
|
||||
Run the M&A advisory swarm with continuous analysis.
|
||||
|
||||
Args:
|
||||
initial_user_input: User's initial M&A transaction details
|
||||
"""
|
||||
self.conversation.add(role=self.user_name, content=initial_user_input)
|
||||
|
||||
while not self.analysis_concluded and self.current_iteration < self.max_iterations:
|
||||
self.current_iteration += 1
|
||||
logger.info(f"Starting analysis iteration {self.current_iteration}")
|
||||
|
||||
# Phase 1: Intake and Scoping
|
||||
print(f"\n{'='*60}")
|
||||
print("ITERATION - INTAKE AND SCOPING")
|
||||
print(f"{'='*60}\n")
|
||||
self.intake_and_scoping(initial_user_input)
|
||||
|
||||
# Phase 2: Market Research (with exa_search)
|
||||
print(f"\n{'='*60}")
|
||||
print("ITERATION - MARKET RESEARCH")
|
||||
print(f"{'='*60}\n")
|
||||
self.market_research()
|
||||
|
||||
# Phase 3: Financial Valuation
|
||||
print(f"\n{'='*60}")
|
||||
print("ITERATION - FINANCIAL VALUATION")
|
||||
print(f"{'='*60}\n")
|
||||
self.financial_valuation()
|
||||
|
||||
# Phase 4: Deal Structuring
|
||||
print(f"\n{'='*60}")
|
||||
print("ITERATION - DEAL STRUCTURING")
|
||||
print(f"{'='*60}\n")
|
||||
self.deal_structuring()
|
||||
|
||||
# Phase 5: Integration Planning
|
||||
print(f"\n{'='*60}")
|
||||
print("ITERATION - INTEGRATION PLANNING")
|
||||
print(f"{'='*60}\n")
|
||||
self.integration_planning()
|
||||
|
||||
# Phase 6: Final Recommendation
|
||||
print(f"\n{'='*60}")
|
||||
print("ITERATION - FINAL RECOMMENDATION")
|
||||
print(f"{'='*60}\n")
|
||||
self.final_recommendation()
|
||||
|
||||
# Conclude analysis after one full sequence for demo purposes
|
||||
self.analysis_concluded = True
|
||||
|
||||
# Return formatted conversation history
|
||||
return history_output_formatter(
|
||||
self.conversation, type=self.output_type
|
||||
)
|
||||
|
||||
def main():
|
||||
"""Main entry point for M&A advisory swarm"""
|
||||
|
||||
# Example M&A transaction details
|
||||
transaction_details = """
|
||||
We are exploring a potential acquisition of DataPulse Analytics by TechNova Solutions.
|
||||
|
||||
Transaction Context:
|
||||
- Buyer: TechNova Solutions (NASDAQ: TNVA) - $500M annual revenue enterprise software company
|
||||
- Target: DataPulse Analytics - Series B AI-driven analytics startup based in San Francisco
|
||||
- Primary Objectives:
|
||||
* Expand predictive analytics capabilities in healthcare and financial services
|
||||
* Accelerate AI-powered business intelligence product roadmap
|
||||
* Acquire top-tier machine learning engineering talent
|
||||
|
||||
Key Considerations:
|
||||
- Deep integration of DataPulse's proprietary AI models into TechNova's existing platform
|
||||
- Retention of key DataPulse leadership and engineering team
|
||||
- Projected 3-year ROI and synergy potential
|
||||
- Regulatory and compliance alignment
|
||||
- Technology stack compatibility
|
||||
"""
|
||||
|
||||
# Initialize the swarm
|
||||
ma_advisory_swarm = MAAdvisorySwarm(
|
||||
name="AI-Powered M&A Advisory System",
|
||||
description="Comprehensive AI-driven M&A advisory and market intelligence platform",
|
||||
user_name="Corporate Development Team",
|
||||
output_type="json",
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
# Run the swarm
|
||||
print("\n" + "="*60)
|
||||
print("INITIALIZING M&A ADVISORY SWARM")
|
||||
print("="*60 + "\n")
|
||||
|
||||
ma_advisory_swarm.run(initial_user_input=transaction_details)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue