pull/30/head
Kye 2 years ago
parent 80039367dc
commit f7116c8e9f

@ -0,0 +1,35 @@
"""Tool for asking human input."""
from typing import Callable, Optional
from pydantic import Field
from langchain.callbacks.manager import CallbackManagerForToolRun
from langchain.tools.base import BaseTool
def _print_func(text: str) -> None:
print("\n")
print(text)
class HumanInputRun(BaseTool):
"""Tool that asks user for input."""
name = "human"
description = (
"You can ask a human for guidance when you think you "
"got stuck or you are not sure what to do next. "
"The input should be a question for the human."
)
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func)
input_func: Callable = Field(default_factory=lambda: input)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Human input tool."""
self.prompt_func(query)
return self.input_func()

@ -1,5 +1,6 @@
import logging
import os
from typing import Optional
import faiss
from langchain import LLMChain, OpenAI, PromptTemplate
@ -99,36 +100,55 @@ class BossNodeInitializer:
# from swarms import BossNode, OpenAI, LLMChain, Tool, ZeroShotAgent, AgentExecutor, PromptTemplate
def BossNode(objective, api_key=None, vectorstore=None, worker_node=None, llm_class=OpenAI, max_iterations=5, verbose=False):
"""
Wrapper function to initialize and use BossNode with given parameters.
API key can be passed as argument or set as an environment variable.
"""
api_key = api_key or os.getenv('API_KEY')
if not api_key:
raise ValueError("API key must be provided either as argument or as an environment variable named 'API_KEY'.")
class BossNode:
#the bossNode is responsible for creating and executing tasks using the BABYAGI model
#it takes a lm a vectorstore for memory and agent_executor for task exeuction, and a maximum number of iterations, for the babyagi model
def __init__(self,
objective,
vectorstore,
boss_system_prompt: Optional[str] = "You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating a worker to help you accomplish your task. Rate every task on the importance of it's probability to complete the main objective on a scale from 0 to 1, an integer. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn a worker agent after creating a plan and pass the objective and plan to the worker agent.",
api_key=None,
worker_node=None,
llm_class=OpenAI,
max_iterations=5,
verbose=False
):
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
self.vectorstore = vectorstore
self.worker_node = worker_node
self.boss_system_prompt = boss_system_prompt
self.llm_class = llm_class
self.max_iterations = max_iterations
self.verbose = verbose
if not self.api_key:
raise ValueError("[BossNode][ValueError][API KEY must be provided either as an argument or as an environment variable API_KEY]")
self.llm = self.initialize_llm(self.llm_class)
llm = BossNode.initialize_llm(llm_class) # This function should be defined elsewhere
todo_prompt = PromptTemplate.from_template(boss_system_prompt)
todo_chain = LLMChain(llm=self.llm, prompt=todo_prompt)
todo_prompt = PromptTemplate.from_template("You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating a worker to help you accomplish your task. Rate every task on the importance of it's probability to complete the main objective on a scale from 0 to 1, an integer. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn a worker agent after creating a plan and pass the objective and plan to the worker agent.")
todo_chain = LLMChain(llm=llm, prompt=todo_prompt)
tools = [
Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for your objective. Note create a todo list then assign a ranking from 0.0 to 1.0 to each task, then sort the tasks based on the tasks most likely to achieve the objective. The Output: a todo list for that objective with rankings for each step from 0.1 Please be very clear what the objective is!"),
self.worker_node
]
suffix = """Question: {task}\n{agent_scratchpad}"""
prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
tools = [
Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for your objective. Note create a todo list then assign a ranking from 0.0 to 1.0 to each task, then sort the tasks based on the tasks most likely to achieve the objective. The Output: a todo list for that objective with rankings for each step from 0.1 Please be very clear what the objective is!"),
worker_node
]
suffix = """Question: {task}\n{agent_scratchpad}"""
prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
llm_chain = LLMChain(llm=self.llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
self.agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=self.verbose)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
self.boss = BossNodeInitializer(self.llm, self.vectorstore, self.agent_executor, self.max_iterations)
self.task = self.boss.create_task(objective)
boss = BossNode(llm, vectorstore, agent_executor, max_iterations)
task = boss.create_task(objective)
boss.run(task)
def run(self):
self.boss.run(self.task)

@ -22,6 +22,7 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
# ---------- Constants ----------
ROOT_DIR = "./data/"
class HierarchicalSwarm:
def __init__(
self,
@ -80,20 +81,19 @@ class HierarchicalSwarm:
objective(str): The task
"""
try:
task = self.boss_node.create_task(objective)
logging.info(f"Running task: {task}")
self.boss_node.task = self.boss_node.create_task(objective)
logging.info(f"Running task: {self.boss_node.task}")
if self.use_async:
loop = asyncio.get_event_loop()
result = loop.run_until_complete(self.boss_node.run(task))
result = loop.run_until_complete(self.boss_node.run())
else:
result = self.boss_node.run(task)
logging.info(f"Completed tasks: {task}")
result = self.boss_node.run()
logging.info(f"Completed tasks: {self.boss_node.task}")
return result
except Exception as e:
logging.error(f"An error occurred in run: {e}")
return None
# usage-# usage-
def swarm(
api_key: Optional[str]="",
objective: Optional[str]="",
@ -126,4 +126,3 @@ def swarm(
except Exception as e:
logging.error(f"An error occured in swarm: {e}")
return None

Loading…
Cancel
Save