parent
9aa167c0cd
commit
f847cea907
@ -1,251 +1 @@
|
||||
#this is copied and pasted from exa, https://github.com/kyegomez/Exa
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from torch.multiprocessing import set_start_method
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
BitsAndBytesConfig,
|
||||
GPTQConfig,
|
||||
)
|
||||
|
||||
#set up logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class HFLLM:
|
||||
"""
|
||||
A class for running inference on a given model.
|
||||
|
||||
Attributes:
|
||||
model_id (str): The ID of the model.
|
||||
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
||||
max_length (int): The maximum length of the output sequence.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
device: str = None,
|
||||
max_length: int = 20,
|
||||
quantize: bool = False,
|
||||
quantization_config: dict = None,
|
||||
verbose = False,
|
||||
# logger=None,
|
||||
distributed=False,
|
||||
decoding=False
|
||||
):
|
||||
"""
|
||||
Initialize the Inference object.
|
||||
|
||||
Args:
|
||||
model_id (str): The ID of the model.
|
||||
device (str, optional): The device to run the model on. Defaults to 'cuda' if available.
|
||||
max_length (int, optional): The maximum length of the output sequence. Defaults to 20.
|
||||
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
||||
quantization_config (dict, optional): The configuration for quantization.
|
||||
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
||||
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
||||
"""
|
||||
self.logger = logging.getLogger(__name__)
|
||||
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.model_id = model_id
|
||||
self.max_length = max_length
|
||||
self.verbose = verbose
|
||||
self.distributed = distributed
|
||||
self.decoding = decoding
|
||||
self.model, self.tokenizer = None, None
|
||||
|
||||
|
||||
if self.distributed:
|
||||
assert torch.cuda.device_count() > 1, "You need more than 1 gpu for distributed processing"
|
||||
|
||||
|
||||
bnb_config = None
|
||||
if quantize:
|
||||
if not quantization_config:
|
||||
quantization_config = {
|
||||
'load_in_4bit': True,
|
||||
'bnb_4bit_use_double_quant': True,
|
||||
'bnb_4bit_quant_type': "nf4",
|
||||
'bnb_4bit_compute_dtype': torch.bfloat16
|
||||
}
|
||||
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id,
|
||||
quantization_config=bnb_config
|
||||
)
|
||||
|
||||
self.model#.to(self.device)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||
raise
|
||||
|
||||
def load_model(self):
|
||||
if not self.model or not self.tokenizer:
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
**self.quantization_config
|
||||
) if self.quantization_config else None
|
||||
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id,
|
||||
quantization_config=bnb_config
|
||||
).to(self.device)
|
||||
|
||||
if self.distributed:
|
||||
self.model = DDP(self.model)
|
||||
except Exception as error:
|
||||
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
||||
raise
|
||||
|
||||
def run(
|
||||
self,
|
||||
prompt_text: str,
|
||||
max_length: int = None
|
||||
):
|
||||
"""
|
||||
Generate a response based on the prompt text.
|
||||
|
||||
Args:
|
||||
- prompt_text (str): Text to prompt the model.
|
||||
- max_length (int): Maximum length of the response.
|
||||
|
||||
Returns:
|
||||
- Generated text (str).
|
||||
"""
|
||||
self.load_model()
|
||||
|
||||
max_length = max_length if max_length else self.max_length
|
||||
try:
|
||||
inputs = self.tokenizer.encode(
|
||||
prompt_text,
|
||||
return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
if self.decoding:
|
||||
with torch.no_grad():
|
||||
for _ in range(max_length):
|
||||
output_sequence = []
|
||||
|
||||
outputs = self.model.generate(
|
||||
inputs,
|
||||
max_length=len(inputs) + 1,
|
||||
do_sample=True
|
||||
)
|
||||
output_tokens = outputs[0][-1]
|
||||
output_sequence.append(output_tokens.item())
|
||||
|
||||
#print token in real-time
|
||||
print(self.tokenizer.decode(
|
||||
[output_tokens],
|
||||
skip_special_tokens=True),
|
||||
end="",
|
||||
flush=True
|
||||
)
|
||||
inputs = outputs
|
||||
else:
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(
|
||||
inputs,
|
||||
max_length=max_length,
|
||||
do_sample=True
|
||||
)
|
||||
|
||||
del inputs
|
||||
|
||||
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to generate the text: {e}")
|
||||
raise
|
||||
|
||||
|
||||
|
||||
class GPTQInference:
|
||||
def __init__(
|
||||
self,
|
||||
model_id,
|
||||
quantization_config_bits,
|
||||
quantization_config_dataset,
|
||||
max_length,
|
||||
verbose = False,
|
||||
distributed = False,
|
||||
):
|
||||
self.model_id = model_id
|
||||
self.quantization_config_bits = quantization_config_bits
|
||||
self.quantization_config_dataset = quantization_config_dataset
|
||||
self.max_length = max_length
|
||||
self.verbose = verbose
|
||||
self.distributed = distributed
|
||||
|
||||
if self.distributed:
|
||||
assert torch.cuda.device_count() > 1, "You need more than 1 gpu for distributed processing"
|
||||
set_start_method("spawn", force=True)
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
else:
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||
self.quantization_config = GPTQConfig(
|
||||
bits=self.quantization_config_bits,
|
||||
dataset=quantization_config_dataset,
|
||||
tokenizer=self.tokenizer
|
||||
)
|
||||
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id,
|
||||
device_map="auto",
|
||||
quantization_config=self.quantization_config
|
||||
).to(self.device)
|
||||
|
||||
if self.distributed:
|
||||
self.model = DDP(
|
||||
self.model,
|
||||
device_ids=[0],
|
||||
output_device=0,
|
||||
)
|
||||
|
||||
logger.info(f"Model loaded from {self.model_id} on {self.device}")
|
||||
|
||||
def run(
|
||||
self,
|
||||
prompt: str,
|
||||
max_length: int = 500,
|
||||
):
|
||||
max_length = self.max_length or max_length
|
||||
|
||||
try:
|
||||
inputs = self.tokenizer.encode(
|
||||
prompt,
|
||||
return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(
|
||||
inputs,
|
||||
max_length=max_length,
|
||||
do_sample=True
|
||||
)
|
||||
|
||||
return self.tokenizer.decode(
|
||||
outputs[0],
|
||||
skip_special_tokens=True
|
||||
)
|
||||
|
||||
except Exception as error:
|
||||
print(f"Error: {error} in inference mode, please change the inference logic or try again")
|
||||
raise
|
||||
|
||||
def __del__(self):
|
||||
#free up resources
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
from exa import Inference, GPTQInference, Mult
|
Loading…
Reference in new issue