Merge pull request #250 from evelynmitchell/master

revert-250-master
Eternal Reclaimer 1 year ago committed by GitHub
commit fbbeef2f7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,40 @@
---
# This is a github action to run docker-compose
# docker-compose.yml
# to run the docker build in the top level directory
# to run the docker build in the tests directory and run the tests with pytest
# docker-compose run --rm app pytest
on:
push:
branches: [ main ]
paths:
- 'docker-compose.yml'
- 'Dockerfile'
- 'tests/**'
- 'app/**'
- 'app.py'
- 'requirements.txt'
- 'README.md'
- '.github/workflows/**'
- '.github/workflows/docker-compose.yml'
- '.github/workflows/main.yml'
- '.github/workflows/python-app.yml'
- '.github/workflows/python-app.yml'
- '.github/workflows'
name: Docker Compose
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
# Add your build and test steps here
- name: Build and run docker services
run: |
docker-compose build
docker-compose up -d
docker-compose run --rm app pytest

@ -10,6 +10,7 @@ on:
env:
POETRY_VERSION: "1.4.2"
jobs:
test:
runs-on: ubuntu-latest
strategy:
@ -46,7 +47,7 @@ env:
make extended_tests
fi
shell: bash
name: Python ${{ matrix.python-version }} ${{ matrix.test_type }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}

@ -16,7 +16,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.x
python-version: 3.11
- name: Install dependencies
run: |

@ -2,6 +2,8 @@
# ==================================
# Use an official Python runtime as a parent image
FROM python:3.9-slim
RUN apt-get update && apt-get -y install libgl1-mesa-dev libglib2.0-0; apt-get clean
RUN pip install opencv-contrib-python-headless
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "2.5.7"
version = "2.5.8"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -52,11 +52,11 @@ ratelimit = "*"
beautifulsoup4 = "*"
cohere = "*"
huggingface-hub = "*"
pydantic = "1.10.12"
pydantic = "2.*"
tenacity = "*"
Pillow = "*"
chromadb = "*"
opencv-python-headless = "*"
opencv-python-headless
tabulate = "*"
termcolor = "*"
black = "*"

@ -17,7 +17,7 @@ faiss-cpu
openai==0.28.0
attrs
datasets
pydantic==1.10.12
pydantic>2
soundfile
huggingface-hub
google-generativeai

@ -12,7 +12,7 @@ class TaskInput(BaseModel):
description=(
"The input parameters for the task. Any value is allowed."
),
example='{\n"debug": false,\n"mode": "benchmarks"\n}',
examples=['{\n"debug": false,\n"mode": "benchmarks"\n}'],
)
@ -20,17 +20,17 @@ class Artifact(BaseModel):
artifact_id: str = Field(
...,
description="Id of the artifact",
example="b225e278-8b4c-4f99-a696-8facf19f0e56",
examples=["b225e278-8b4c-4f99-a696-8facf19f0e56"],
)
file_name: str = Field(
..., description="Filename of the artifact", example="main.py"
..., description="Filename of the artifact", examples=["main.py"]
)
relative_path: Optional[str] = Field(
None,
description=(
"Relative path of the artifact in the agent's workspace"
),
example="python/code/",
examples=["python/code/"],
)
@ -41,7 +41,7 @@ class ArtifactUpload(BaseModel):
description=(
"Relative path of the artifact in the agent's workspace"
),
example="python/code/",
examples=["python/code/"],
)
@ -52,7 +52,7 @@ class StepInput(BaseModel):
"Input parameters for the task step. Any value is"
" allowed."
),
example='{\n"file_to_refactor": "models.py"\n}',
examples=['{\n"file_to_refactor": "models.py"\n}'],
)
@ -63,7 +63,7 @@ class StepOutput(BaseModel):
"Output that the task step has produced. Any value is"
" allowed."
),
example='{\n"tokens": 7894,\n"estimated_cost": "0,24$"\n}',
examples=['{\n"tokens": 7894,\n"estimated_cost": "0,24$"\n}'],
)
@ -71,9 +71,9 @@ class TaskRequestBody(BaseModel):
input: Optional[str] = Field(
None,
description="Input prompt for the task.",
example=(
examples=[(
"Write the words you receive to the file 'output.txt'."
),
)],
)
additional_input: Optional[TaskInput] = None
@ -82,15 +82,15 @@ class Task(TaskRequestBody):
task_id: str = Field(
...,
description="The ID of the task.",
example="50da533e-3904-4401-8a07-c49adf88b5eb",
examples=["50da533e-3904-4401-8a07-c49adf88b5eb"],
)
artifacts: List[Artifact] = Field(
[],
description="A list of artifacts that the task has produced.",
example=[
examples=[[
"7a49f31c-f9c6-4346-a22c-e32bc5af4d8e",
"ab7b4091-2560-4692-a4fe-d831ea3ca7d6",
],
]],
)
@ -98,7 +98,7 @@ class StepRequestBody(BaseModel):
input: Optional[str] = Field(
None,
description="Input prompt for the step.",
example="Washington",
examples=["Washington"],
)
additional_input: Optional[StepInput] = None
@ -113,17 +113,17 @@ class Step(StepRequestBody):
task_id: str = Field(
...,
description="The ID of the task this step belongs to.",
example="50da533e-3904-4401-8a07-c49adf88b5eb",
examples=["50da533e-3904-4401-8a07-c49adf88b5eb"],
)
step_id: str = Field(
...,
description="The ID of the task step.",
example="6bb1801a-fd80-45e8-899a-4dd723cc602e",
examples=["6bb1801a-fd80-45e8-899a-4dd723cc602e"],
)
name: Optional[str] = Field(
None,
description="The name of the task step.",
example="Write to file",
examples=["Write to file"],
)
status: Status = Field(
..., description="The status of the task step."
@ -131,11 +131,11 @@ class Step(StepRequestBody):
output: Optional[str] = Field(
None,
description="Output of the task step.",
example=(
examples=[(
"I am going to use the write_to_file command and write"
" Washington to a file called output.txt"
" <write_to_file('output.txt', 'Washington')"
),
)],
)
additional_output: Optional[StepOutput] = None
artifacts: List[Artifact] = Field(

@ -24,7 +24,7 @@ from langchain.callbacks.manager import (
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from pydantic import Field, SecretStr, root_validator
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.output import GenerationChunk
from langchain.schema.prompt import PromptValue
@ -219,21 +219,13 @@ def build_extra_kwargs(
return extra_kwargs
def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr:
"""Convert a string to a SecretStr if needed."""
if isinstance(value, SecretStr):
return value
return SecretStr(value)
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
model: str ="claude-2"
"""Model name to use."""
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
max_tokens_to_sample: int =256
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
@ -253,14 +245,14 @@ class _AnthropicCommon(BaseLanguageModel):
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[SecretStr] = None
anthropic_api_key: Optional[str] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
model_kwargs: Dict[str, Any] = {}
@root_validator(pre=True)
@classmethod
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
@ -269,13 +261,11 @@ class _AnthropicCommon(BaseLanguageModel):
)
return values
@root_validator()
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(
values["anthropic_api_key"] = get_from_dict_or_env(
values, "anthropic_api_key", "ANTHROPIC_API_KEY"
)
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
@ -377,13 +367,7 @@ class Anthropic(LLM, _AnthropicCommon):
response = model(prompt)
"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
@classmethod
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(

@ -16,7 +16,7 @@ from langchain.callbacks.manager import (
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.load.serializable import Serializable
from pydantic import Extra, Field, root_validator
from pydantic import model_validator, ConfigDict, Field
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
@ -85,7 +85,8 @@ class BaseCohere(Serializable):
user_agent: str = "langchain"
"""Identifier for the application making the request."""
@root_validator()
@model_validator()
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
@ -145,11 +146,7 @@ class Cohere(LLM, BaseCohere):
max_retries: int = 10
"""Maximum number of retries to make when generating."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
model_config = ConfigDict(extra="forbid")
@property
def _default_params(self) -> Dict[str, Any]:

@ -13,7 +13,7 @@ from cachetools import TTLCache
from dotenv import load_dotenv
from openai import OpenAI
from PIL import Image
from pydantic import validator
from pydantic import field_validator
from termcolor import colored
load_dotenv()
@ -92,7 +92,8 @@ class Dalle3:
arbitrary_types_allowed = True
@validator("max_retries", "time_seconds")
@field_validator("max_retries", "time_seconds")
@classmethod
def must_be_positive(cls, value):
if value <= 0:
raise ValueError("Must be positive")

@ -3,7 +3,7 @@ from enum import Enum
from typing import Any, Dict, Union
from langchain.utils import get_from_dict_or_env
from pydantic import root_validator
from pydantic import model_validator
from swarms.tools.tool import BaseTool
@ -59,7 +59,8 @@ class ElevenLabsText2SpeechTool(BaseTool):
" Italian, French, Portuguese, and Hindi. "
)
@root_validator(pre=True)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
_ = get_from_dict_or_env(

@ -20,6 +20,8 @@ class ClassificationResult(BaseModel):
class_id: List[StrictInt]
confidence: List[StrictFloat]
# TODO[pydantic]: We couldn't refactor the `validator`, please replace it by `field_validator` manually.
# Check https://docs.pydantic.dev/dev-v2/migration/#changes-to-validators for more information.
@validator("class_id", "confidence", pre=True, each_item=True)
def check_list_contents(cls, v):
assert isinstance(v, int) or isinstance(

@ -20,6 +20,8 @@ class Detections(BaseModel):
), "All fields must have the same length."
return values
# TODO[pydantic]: We couldn't refactor the `validator`, please replace it by `field_validator` manually.
# Check https://docs.pydantic.dev/dev-v2/migration/#changes-to-validators for more information.
@validator(
"xyxy", "class_id", "confidence", pre=True, each_item=True
)

@ -16,7 +16,7 @@ from typing import (
)
import numpy as np
from pydantic import BaseModel, Extra, Field, root_validator
from pydantic import model_validator, ConfigDict, BaseModel, Field
from tenacity import (
AsyncRetrying,
before_sleep_log,
@ -186,7 +186,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""
client: Any #: :meta private:
client: Any = None #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: Optional[str] = None
@ -227,13 +227,10 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
model_config = ConfigDict(extra="forbid")
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
@ -264,7 +261,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
values["model_kwargs"] = extra
return values
@root_validator()
@model_validator()
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(

@ -2,7 +2,7 @@ from typing import Any, Dict, List, Optional, Union
import openai
import requests
from pydantic import BaseModel, validator
from pydantic import field_validator, BaseModel
from tenacity import (
retry,
stop_after_attempt,
@ -78,7 +78,8 @@ class FunctionSpecification(BaseModel):
parameters: Dict[str, Any]
required: Optional[List[str]] = None
@validator("parameters")
@field_validator("parameters")
@classmethod
def check_parameters(cls, params):
if not isinstance(params, dict):
raise ValueError("Parameters must be a dictionary.")

@ -38,6 +38,7 @@ from importlib.metadata import version
from packaging.version import parse
logger = logging.getLogger(__name__)
@ -248,12 +249,8 @@ class BaseOpenAI(BaseLLM):
data.get("model_name", "")
return super().__new__(cls)
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
@ -263,7 +260,8 @@ class BaseOpenAI(BaseLLM):
)
return values
@root_validator()
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
@ -758,7 +756,7 @@ class AzureOpenAI(BaseOpenAI):
openai_api_type: str = ""
openai_api_version: str = ""
@root_validator()
@classmethod
def validate_azure_settings(cls, values: Dict) -> Dict:
values["openai_api_version"] = get_from_dict_or_env(
values,
@ -847,7 +845,7 @@ class OpenAIChat(BaseLLM):
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
"""Set of special tokens that are not allowed。"""
@root_validator(pre=True)
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {
@ -865,7 +863,8 @@ class OpenAIChat(BaseLLM):
values["model_kwargs"] = extra
return values
@root_validator()
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(

@ -15,6 +15,7 @@ from tenacity import (
stop_after_attempt,
wait_exponential,
)
from pydantic import model_validator
logger = logging.getLogger(__name__)
@ -104,7 +105,8 @@ class GooglePalm(BaseLLM, BaseModel):
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
@root_validator()
@model_validator()
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(

@ -9,7 +9,7 @@ import backoff
import torch
from diffusers import StableDiffusionXLPipeline
from PIL import Image
from pydantic import validator
from pydantic import field_validator
from termcolor import colored
from cachetools import TTLCache
@ -72,7 +72,8 @@ class SSD1B:
arbitrary_types_allowed = True
@validator("max_retries", "time_seconds")
@field_validator("max_retries", "time_seconds")
@classmethod
def must_be_positive(cls, value):
if value <= 0:
raise ValueError("Must be positive")

@ -2,17 +2,14 @@ from typing import List
import timm
import torch
from pydantic import BaseModel
from pydantic import ConfigDict, BaseModel
class TimmModelInfo(BaseModel):
model_name: str
pretrained: bool
in_chans: int
class Config:
# Use strict typing for all fields
strict = True
model_config = ConfigDict(strict=True)
class TimmModel:

@ -29,14 +29,7 @@ from langchain.callbacks.manager import (
)
from langchain.load.serializable import Serializable
from pydantic import (
BaseModel,
Extra,
Field,
create_model,
root_validator,
validate_arguments,
)
from langchain.schema.runnable import (
Runnable,
RunnableConfig,
@ -48,62 +41,9 @@ class SchemaAnnotationError(TypeError):
"""Raised when 'args_schema' is missing or has an incorrect type annotation."""
def _create_subset_model(
name: str, model: BaseModel, field_names: list
) -> Type[BaseModel]:
"""Create a pydantic model with only a subset of model's fields."""
fields = {}
for field_name in field_names:
field = model.__fields__[field_name]
fields[field_name] = (field.outer_type_, field.field_info)
return create_model(name, **fields) # type: ignore
def _get_filtered_args(
inferred_model: Type[BaseModel],
func: Callable,
) -> dict:
"""Get the arguments from a function's signature."""
schema = inferred_model.schema()["properties"]
valid_keys = signature(func).parameters
return {
k: schema[k]
for k in valid_keys
if k not in ("run_manager", "callbacks")
}
class _SchemaConfig:
"""Configuration for the pydantic model."""
extra: Any = Extra.forbid
arbitrary_types_allowed: bool = True
def create_schema_from_function(
model_name: str,
func: Callable,
) -> Type[BaseModel]:
"""Create a pydantic schema from a function's signature.
Args:
model_name: Name to assign to the generated pydandic schema
func: Function to generate the schema from
Returns:
A pydantic model with the same arguments as the function
"""
# https://docs.pydantic.dev/latest/usage/validation_decorator/
validated = validate_arguments(func, config=_SchemaConfig) # type: ignore
inferred_model = validated.model # type: ignore
if "run_manager" in inferred_model.__fields__:
del inferred_model.__fields__["run_manager"]
if "callbacks" in inferred_model.__fields__:
del inferred_model.__fields__["callbacks"]
# Pydantic adds placeholder virtual fields we need to strip
valid_properties = _get_filtered_args(inferred_model, func)
return _create_subset_model(
f"{model_name}Schema", inferred_model, list(valid_properties)
)
class ToolException(Exception):
"""An optional exception that tool throws when execution error occurs.
@ -131,7 +71,7 @@ class BaseTool(RunnableSerializable[Union[str, Dict], Any]):
if args_schema_type is not None:
if (
args_schema_type is None
or args_schema_type == BaseModel
# or args_schema_type == BaseModel
):
# Throw errors for common mis-annotations.
# TODO: Use get_args / get_origin and fully
@ -168,11 +108,10 @@ class ChildTool(BaseTool):
verbose: bool = False
"""Whether to log the tool's progress."""
callbacks: Callbacks = Field(default=None, exclude=True)
callbacks: Callbacks = None
"""Callbacks to be called during tool execution."""
callback_manager: Optional[BaseCallbackManager] = Field(
default=None, exclude=True
)
# TODO: I don't know how to remove Field here
callback_manager: Optional[BaseCallbackManager] = None
"""Deprecated. Please use callbacks instead."""
tags: Optional[List[str]] = None
"""Optional list of tags associated with the tool. Defaults to None
@ -192,9 +131,11 @@ class ChildTool(BaseTool):
] = False
"""Handle the content of the ToolException thrown."""
# TODO[pydantic]: The `Config` class inherits from another class, please create the `model_config` manually.
# Check https://docs.pydantic.dev/dev-v2/migration/#changes-to-config for more information.
class Config(Serializable.Config):
"""Configuration for this pydantic object."""
model_config = {}
arbitrary_types_allowed = True
@property
@ -214,7 +155,8 @@ class ChildTool(BaseTool):
# --- Runnable ---
@property
def input_schema(self) -> Type[BaseModel]:
# TODO
def input_schema(self):
"""The tool's input schema."""
if self.args_schema is not None:
return self.args_schema
@ -276,7 +218,7 @@ class ChildTool(BaseTool):
}
return tool_input
@root_validator()
@classmethod
def raise_deprecation(cls, values: Dict) -> Dict:
"""Raise deprecation warning if callback_manager is used."""
if values.get("callback_manager") is not None:
@ -671,9 +613,7 @@ class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
description: str = ""
args_schema: Type[BaseModel] = Field(
..., description="The tool schema."
)
"""The input arguments' schema."""
func: Optional[Callable[..., Any]]
"""The function to run when the tool is called."""

@ -1,7 +1,7 @@
from abc import ABC
from typing import Any, Dict, List, Literal, TypedDict, Union, cast
from pydantic import BaseModel, PrivateAttr
from pydantic import ConfigDict, BaseModel, PrivateAttr
class BaseSerialized(TypedDict):
@ -64,9 +64,7 @@ class Serializable(BaseModel, ABC):
constructor.
"""
return {}
class Config:
extra = "ignore"
model_config = ConfigDict(extra="ignore")
_lc_kwargs = PrivateAttr(default_factory=dict)

@ -2,6 +2,8 @@
# -==================
# Use an official Python runtime as a parent image
FROM python:3.9-slim
RUN apt-get update && apt-get -y install libgl1-mesa-dev libglib2.0-0; apt-get clean
RUN pip install opencv-contrib-python-headless
# Set environment variables to make Python output unbuffered and disable the PIP cache
ENV PYTHONDONTWRITEBYTECODE 1

Loading…
Cancel
Save