Merge branch 'master' into feature/mcp-integration

pull/819/head
Pavan Kumar 3 months ago committed by GitHub
commit ffaeef80bd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -1,334 +0,0 @@
# ClusterOps API Reference
ClusterOps is a Python library for managing and executing tasks across CPU and GPU resources in a distributed computing environment. It provides functions for resource discovery, task execution, and performance monitoring.
## Installation
```bash
$ pip3 install clusterops
```
## Table of Contents
1. [CPU Operations](#cpu-operations)
2. [GPU Operations](#gpu-operations)
3. [Utility Functions](#utility-functions)
4. [Resource Monitoring](#resource-monitoring)
## CPU Operations
### `list_available_cpus()`
Lists all available CPU cores.
#### Returns
| Type | Description |
|------|-------------|
| `List[int]` | A list of available CPU core indices. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `RuntimeError` | If no CPUs are found. |
#### Example
```python
from clusterops import list_available_cpus
available_cpus = list_available_cpus()
print(f"Available CPU cores: {available_cpus}")
```
### `execute_on_cpu(cpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any`
Executes a callable on a specific CPU.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `cpu_id` | `int` | The CPU core to run the function on. |
| `func` | `Callable` | The function to be executed. |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `Any` | The result of the function execution. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `ValueError` | If the CPU core specified is invalid. |
| `RuntimeError` | If there is an error executing the function on the CPU. |
#### Example
```python
from clusterops import execute_on_cpu
def sample_task(n: int) -> int:
return n * n
result = execute_on_cpu(0, sample_task, 10)
print(f"Result of sample task on CPU 0: {result}")
```
### `execute_with_cpu_cores(core_count: int, func: Callable, *args: Any, **kwargs: Any) -> Any`
Executes a callable using a specified number of CPU cores.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `core_count` | `int` | The number of CPU cores to run the function on. |
| `func` | `Callable` | The function to be executed. |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `Any` | The result of the function execution. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `ValueError` | If the number of CPU cores specified is invalid or exceeds available cores. |
| `RuntimeError` | If there is an error executing the function on the specified CPU cores. |
#### Example
```python
from clusterops import execute_with_cpu_cores
def parallel_task(n: int) -> int:
return sum(range(n))
result = execute_with_cpu_cores(4, parallel_task, 1000000)
print(f"Result of parallel task using 4 CPU cores: {result}")
```
## GPU Operations
### `list_available_gpus() -> List[str]`
Lists all available GPUs.
#### Returns
| Type | Description |
|------|-------------|
| `List[str]` | A list of available GPU names. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `RuntimeError` | If no GPUs are found. |
#### Example
```python
from clusterops import list_available_gpus
available_gpus = list_available_gpus()
print(f"Available GPUs: {available_gpus}")
```
### `select_best_gpu() -> Optional[int]`
Selects the GPU with the most free memory.
#### Returns
| Type | Description |
|------|-------------|
| `Optional[int]` | The GPU ID of the best available GPU, or None if no GPUs are available. |
#### Example
```python
from clusterops import select_best_gpu
best_gpu = select_best_gpu()
if best_gpu is not None:
print(f"Best GPU for execution: GPU {best_gpu}")
else:
print("No GPUs available")
```
### `execute_on_gpu(gpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any`
Executes a callable on a specific GPU using Ray.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `gpu_id` | `int` | The GPU to run the function on. |
| `func` | `Callable` | The function to be executed. |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `Any` | The result of the function execution. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `ValueError` | If the GPU index is invalid. |
| `RuntimeError` | If there is an error executing the function on the GPU. |
#### Example
```python
from clusterops import execute_on_gpu
def gpu_task(n: int) -> int:
return n ** 2
result = execute_on_gpu(0, gpu_task, 10)
print(f"Result of GPU task on GPU 0: {result}")
```
### `execute_on_multiple_gpus(gpu_ids: List[int], func: Callable, all_gpus: bool = False, timeout: float = None, *args: Any, **kwargs: Any) -> List[Any]`
Executes a callable across multiple GPUs using Ray.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `gpu_ids` | `List[int]` | The list of GPU IDs to run the function on. |
| `func` | `Callable` | The function to be executed. |
| `all_gpus` | `bool` | Whether to use all available GPUs (default: False). |
| `timeout` | `float` | Timeout for the execution in seconds (default: None). |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `List[Any]` | A list of results from the execution on each GPU. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `ValueError` | If any GPU index is invalid. |
| `RuntimeError` | If there is an error executing the function on the GPUs. |
#### Example
```python
from clusterops import execute_on_multiple_gpus
def multi_gpu_task(n: int) -> int:
return n ** 3
results = execute_on_multiple_gpus([0, 1], multi_gpu_task, 5)
print(f"Results of multi-GPU task: {results}")
```
### `distributed_execute_on_gpus(gpu_ids: List[int], func: Callable, *args: Any, **kwargs: Any) -> List[Any]`
Executes a callable across multiple GPUs and nodes using Ray's distributed task scheduling.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `gpu_ids` | `List[int]` | The list of GPU IDs across nodes to run the function on. |
| `func` | `Callable` | The function to be executed. |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `List[Any]` | A list of results from the execution on each GPU. |
#### Example
```python
from clusterops import distributed_execute_on_gpus
def distributed_task(n: int) -> int:
return n ** 4
results = distributed_execute_on_gpus([0, 1, 2, 3], distributed_task, 3)
print(f"Results of distributed GPU task: {results}")
```
## Utility Functions
### `retry_with_backoff(func: Callable, retries: int = RETRY_COUNT, delay: float = RETRY_DELAY, *args: Any, **kwargs: Any) -> Any`
Retries a callable function with exponential backoff in case of failure.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `func` | `Callable` | The function to execute with retries. |
| `retries` | `int` | Number of retries (default: RETRY_COUNT from env). |
| `delay` | `float` | Delay between retries in seconds (default: RETRY_DELAY from env). |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `Any` | The result of the function execution. |
#### Raises
| Exception | Description |
|-----------|-------------|
| `Exception` | After all retries fail. |
#### Example
```python
from clusterops import retry_with_backoff
def unstable_task():
# Simulating an unstable task that might fail
import random
if random.random() < 0.5:
raise Exception("Task failed")
return "Task succeeded"
result = retry_with_backoff(unstable_task, retries=5, delay=1)
print(f"Result of unstable task: {result}")
```
## Resource Monitoring
### `monitor_resources()`
Continuously monitors CPU and GPU resources and logs alerts when thresholds are crossed.
#### Example
```python
from clusterops import monitor_resources
# Start monitoring resources
monitor_resources()
```
### `profile_execution(func: Callable, *args: Any, **kwargs: Any) -> Any`
Profiles the execution of a task, collecting metrics like execution time and CPU/GPU usage.
#### Parameters
| Name | Type | Description |
|------|------|-------------|
| `func` | `Callable` | The function to profile. |
| `*args` | `Any` | Arguments for the callable. |
| `**kwargs` | `Any` | Keyword arguments for the callable. |
#### Returns
| Type | Description |
|------|-------------|
| `Any` | The result of the function execution along with the collected metrics. |
#### Example
```python
from clusterops import profile_execution
def cpu_intensive_task():
return sum(i*i for i in range(10000000))
result = profile_execution(cpu_intensive_task)
print(f"Result of profiled task: {result}")
```
This API reference provides a comprehensive overview of the ClusterOps library's main functions, their parameters, return values, and usage examples. It should help users understand and utilize the library effectively for managing and executing tasks across CPU and GPU resources in a distributed computing environment.

@ -0,0 +1,77 @@
# 🔗 Links & Resources
Welcome to the Swarms ecosystem. Click any tile below to explore our products, community, documentation, and social platforms.
---
<style>
.resource-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(260px, 1fr));
gap: 1rem;
margin-top: 1.5rem;
}
.resource-card {
display: block;
padding: 1.2rem;
border-radius: 12px;
background: #1e1e2f;
color: white;
text-decoration: none;
text-align: center;
font-weight: 600;
transition: transform 0.2s ease, background 0.3s ease;
box-shadow: 0 4px 20px rgba(0,0,0,0.2);
}
.resource-card:hover {
transform: translateY(-4px);
background: #2a2a3d;
}
</style>
<div class="resource-grid">
<a class="resource-card" href="https://swarms.world/platform/chat" target="_blank">🗣️ Swarms Chat</a>
<a class="resource-card" href="https://swarms.world" target="_blank">🛍️ Swarms Marketplace</a>
<a class="resource-card" href="https://docs.swarms.world/en/latest/swarms_cloud/swarms_api/" target="_blank">📚 Swarms API Docs</a>
<a class="resource-card" href="https://www.swarms.xyz/programs/startups" target="_blank">🚀 Swarms Startup Program</a>
<a class="resource-card" href="https://github.com/kyegomez/swarms" target="_blank">💻 GitHub: Swarms (Python)</a>
<a class="resource-card" href="https://github.com/The-Swarm-Corporation/swarms-rs" target="_blank">🦀 GitHub: Swarms (Rust)</a>
<a class="resource-card" href="https://discord.gg/jM3Z6M9uMq" target="_blank">💬 Join Our Discord</a>
<a class="resource-card" href="https://t.me/swarmsgroupchat" target="_blank">📱 Telegram Group</a>
<a class="resource-card" href="https://x.com/swarms_corp" target="_blank">🐦 Twitter / X</a>
<a class="resource-card" href="https://medium.com/@kyeg" target="_blank">✍️ Swarms Blog on Medium</a>
</div>
---
## 💡 Quick Summary
| Category | Link |
|--------------|----------------------------------------------------------------------|
| API Docs | [docs.swarms.world](https://docs.swarms.world/en/latest/swarms_cloud/swarms_api/) |
| GitHub | [kyegomez/swarms](https://github.com/kyegomez/swarms) |
| GitHub (Rust)| [The-Swarm-Corporation/swarms-rs](https://github.com/The-Swarm-Corporation/swarms-rs) |
| Chat UI | [swarms.world/platform/chat](https://swarms.world/platform/chat) |
| Marketplace | [swarms.world](https://swarms.world) |
| Startup App | [Apply Here](https://www.swarms.xyz/programs/startups) |
| Discord | [Join Now](https://discord.gg/jM3Z6M9uMq) |
| Telegram | [Group Chat](https://t.me/swarmsgroupchat) |
| Twitter/X | [@swarms_corp](https://x.com/swarms_corp) |
| Blog | [medium.com/@kyeg](https://medium.com/@kyeg) |
---
> 🐝 Swarms is building the agentic internet. Join the movement and build the future with us.

@ -371,6 +371,11 @@ nav:
- Agents: "swarms_rs/agents.md"
- Governance:
- Resources: "governance/main.md"
- Tokenomics: "web3/token.md"
# - Prompts API:
# - Add Prompts: "swarms_platform/prompts/add_prompt.md"
# - Edit Prompts: "swarms_platform/prompts/edit_prompt.md"

@ -0,0 +1,143 @@
# $swarms Tokenomics
**Empowering the Agentic Revolution**
Token Contract Address: `74SBV4zDXxTRgv1pEMoECskKBkZHc2yGPnc7GYVepump`
> You can buy $swarms on most marketplaces:
> **Pump.fun**, **Kraken**, **Bitget**, **Binance**, **OKX**, and more.
---
## 📦 Overview
- **Token Name:** Swarms Coin
- **Ticker:** `$swarms`
- **Blockchain:** Solana
- **Utility:** Powering the agentic economy.
---
## 📊 Initial Token Distribution
| Allocation | Percentage |
|-----------------|------------|
| 🧠 **Team** | 3% |
| 🌍 **Public Sale** | 97% |
> ⚠️ At launch, only **2%** was reserved for the team — among the **smallest allocations in DAO history**.
---
## 📣 A Message from the Team
!!! quote
When we launched $swarms, we prioritized community ownership by allocating just 2% to the team.
Our intent was radical decentralization. But that decision has created unintended consequences.
### ❗ Challenges We Faced
- **Market manipulation** by whales and exchanges
- **Unsustainable funding** for innovation and ops
- **Malicious actors undermining decentralization**
---
## 🛠 Our Proposed Solution
We are initiating a **DAO governance proposal** to:
=== "Key Reforms"
- 📈 **Increase team allocation to 10%**
Secure operational longevity and attract top contributors.
- 🌱 **Launch an ecosystem grants program**
Incentivize developers building agentic tools and infra.
- 🛡 **Combat token manipulation**
Deploy anti-whale policies and explore token lockups.
- 🤝 **Strengthen community dev initiatives**
Support contributor bounties, governance tooling, and hackathons.
> This proposal isnt about centralizing power — it's about protecting and empowering the **Swarms ecosystem**.
---
## 💸 Contribute to Swarms DAO
To expand our ecosystem, grow the core team, and bring agentic AI to the world, we invite all community members to **invest directly in Swarms DAO**.
Send **$swarms** or **SOL** to our official treasury address:
```plaintext
🪙 DAO Treasury Wallet:
7MaX4muAn8ZQREJxnupm8sgokwFHujgrGfH9Qn81BuEV
```
!!! success "Every contribution matters"
Whether its 1 $swarms or 1000 SOL — youre helping fund a decentralized future.
> You may use most wallets and platforms supporting Solana to send tokens.
---
## 🧠 Why Invest?
Your contributions fund:
- Expansion of the **Swarms core team**
- Development of **open-source AI agent tooling**
- Community **grants** and contributor **bounties**
- Anti-manipulation strategies & decentralized governance tools
---
## 🚀 How to Get Involved
[![Join the DAO](https://img.shields.io/badge/DAO%20Governance-Click%20Here-blue?style=for-the-badge&logo=solana)](https://dao.swarms.world)
[![Investor Info](https://img.shields.io/badge/Investor%20Page-Explore-green?style=for-the-badge)](https://investors.swarms.world)
### 🛠 You can:
- Vote on governance proposals
- Submit development or funding proposals
- Share $swarms with your network
- Build with our upcoming agent SDKs
- Contribute to the mission of agentic decentralization
---
## 📘 Quick Summary
| Key Metric | Value |
|----------------------------|------------------|
| **Token Symbol** | `$swarms` |
| **Blockchain** | Solana |
| **Initial Team Allocation**| 3% (Proposed 10%)|
| **Public Distribution** | 97% |
| **DAO Wallet** | `7MaX4muAn8ZQREJxnupm8sgokwFHujgrGfH9Qn81BuEV` |
| **DAO Governance** | [dao.swarms.world](https://dao.swarms.world) |
---
## 🌍 Useful Links
- [DAO Governance Portal][dao]
- [Investor Information][investors]
- [Official Site][site]
- [Join Swarms on Discord][discord]
[dao]: https://dao.swarms.world/
[investors]: https://investors.swarms.world/
[site]: https://swarms.world/
[discord]: https://discord.gg/swarms
```

@ -5,7 +5,8 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "7.7.1"
version = "7.7.2"
description = "Swarms - TGSC"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -1074,7 +1074,8 @@ class Agent:
def _handle_run_error(self, error: any):
process_thread = threading.Thread(
target=self.__handle_run_error,
args=(error, ),
args=(error,),
daemon=True,
)
process_thread.start()

@ -44,6 +44,7 @@ async def _execute_mcp_tool(
parameters: Dict[Any, Any] = None,
output_type: Literal["str", "dict"] = "str",
timeout: float = 30.0,
*args,
**kwargs,
) -> Dict[Any, Any]:
@ -74,15 +75,20 @@ async def _execute_mcp_tool(
async def execute_mcp_tool(
url: str,
tool_name: str = None,
method: Literal["stdio", "sse"] = "sse",
parameters: Dict[Any, Any] = None,
output_type: Literal["str", "dict"] = "str",
) -> Dict[Any, Any]:
return await _execute_mcp_tool(
url=url,
method=method,
parameters=parameters,
output_type=output_type,
return asyncio.run(
_execute_mcp_tool(
url=url,
tool_name=tool_name,
method=method,
parameters=parameters,
output_type=output_type,
)
)

@ -0,0 +1,284 @@
import asyncio
import concurrent.futures
import json
import os
import psutil
import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional
from swarms.structs.agent import Agent
from loguru import logger
class AgentBenchmark:
def __init__(
self,
num_iterations: int = 5,
output_dir: str = "benchmark_results",
):
self.num_iterations = num_iterations
self.output_dir = Path(output_dir)
self.output_dir.mkdir(exist_ok=True)
# Use process pool for CPU-bound tasks
self.process_pool = concurrent.futures.ProcessPoolExecutor(
max_workers=min(os.cpu_count(), 4)
)
# Use thread pool for I/O-bound tasks
self.thread_pool = concurrent.futures.ThreadPoolExecutor(
max_workers=min(os.cpu_count() * 2, 8)
)
self.default_queries = [
"Conduct an analysis of the best real undervalued ETFs",
"What are the top performing tech stocks this quarter?",
"Analyze current market trends in renewable energy sector",
"Compare Bitcoin and Ethereum investment potential",
"Evaluate the risk factors in emerging markets",
]
self.agent = self._initialize_agent()
self.process = psutil.Process()
# Cache for storing repeated query results
self._query_cache = {}
def _initialize_agent(self) -> Agent:
return Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Personal finance advisor agent",
# system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
max_loops=1,
model_name="gpt-4o-mini",
dynamic_temperature_enabled=True,
interactive=False,
)
def _get_system_metrics(self) -> Dict[str, float]:
# Optimized system metrics collection
return {
"cpu_percent": self.process.cpu_percent(),
"memory_mb": self.process.memory_info().rss / 1024 / 1024,
}
def _calculate_statistics(
self, values: List[float]
) -> Dict[str, float]:
if not values:
return {}
sorted_values = sorted(values)
n = len(sorted_values)
mean_val = sum(values) / n
stats = {
"mean": mean_val,
"median": sorted_values[n // 2],
"min": sorted_values[0],
"max": sorted_values[-1],
}
# Only calculate stdev if we have enough values
if n > 1:
stats["std_dev"] = (
sum((x - mean_val) ** 2 for x in values) / n
) ** 0.5
return {k: round(v, 3) for k, v in stats.items()}
async def process_iteration(
self, query: str, iteration: int
) -> Dict[str, Any]:
"""Process a single iteration of a query"""
try:
# Check cache for repeated queries
cache_key = f"{query}_{iteration}"
if cache_key in self._query_cache:
return self._query_cache[cache_key]
iteration_start = datetime.datetime.now()
pre_metrics = self._get_system_metrics()
# Run the agent
try:
self.agent.run(query)
success = True
except Exception as e:
str(e)
success = False
execution_time = (
datetime.datetime.now() - iteration_start
).total_seconds()
post_metrics = self._get_system_metrics()
result = {
"execution_time": execution_time,
"success": success,
"pre_metrics": pre_metrics,
"post_metrics": post_metrics,
"iteration_data": {
"iteration": iteration + 1,
"execution_time": round(execution_time, 3),
"success": success,
"system_metrics": {
"pre": pre_metrics,
"post": post_metrics,
},
},
}
# Cache the result
self._query_cache[cache_key] = result
return result
except Exception as e:
logger.error(f"Error in iteration {iteration}: {e}")
raise
async def run_benchmark(
self, queries: Optional[List[str]] = None
) -> Dict[str, Any]:
"""Run the benchmark asynchronously"""
queries = queries or self.default_queries
benchmark_data = {
"metadata": {
"timestamp": datetime.datetime.now().isoformat(),
"num_iterations": self.num_iterations,
"agent_config": {
"model_name": self.agent.model_name,
"max_loops": self.agent.max_loops,
},
},
"results": {},
}
async def process_query(query: str):
query_results = {
"execution_times": [],
"system_metrics": [],
"iterations": [],
}
# Process iterations concurrently
tasks = [
self.process_iteration(query, i)
for i in range(self.num_iterations)
]
iteration_results = await asyncio.gather(*tasks)
for result in iteration_results:
query_results["execution_times"].append(
result["execution_time"]
)
query_results["system_metrics"].append(
result["post_metrics"]
)
query_results["iterations"].append(
result["iteration_data"]
)
# Calculate statistics
query_results["statistics"] = {
"execution_time": self._calculate_statistics(
query_results["execution_times"]
),
"memory_usage": self._calculate_statistics(
[
m["memory_mb"]
for m in query_results["system_metrics"]
]
),
"cpu_usage": self._calculate_statistics(
[
m["cpu_percent"]
for m in query_results["system_metrics"]
]
),
}
return query, query_results
# Execute all queries concurrently
query_tasks = [process_query(query) for query in queries]
query_results = await asyncio.gather(*query_tasks)
for query, results in query_results:
benchmark_data["results"][query] = results
return benchmark_data
def save_results(self, benchmark_data: Dict[str, Any]) -> str:
"""Save benchmark results efficiently"""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = (
self.output_dir / f"benchmark_results_{timestamp}.json"
)
# Write results in a single operation
with open(filename, "w") as f:
json.dump(benchmark_data, f, indent=2)
logger.info(f"Benchmark results saved to: {filename}")
return str(filename)
def print_summary(self, results: Dict[str, Any]):
"""Print a summary of the benchmark results"""
print("\n=== Benchmark Summary ===")
for query, data in results["results"].items():
print(f"\nQuery: {query[:50]}...")
stats = data["statistics"]["execution_time"]
print(f"Average time: {stats['mean']:.2f}s")
print(
f"Memory usage (avg): {data['statistics']['memory_usage']['mean']:.1f}MB"
)
print(
f"CPU usage (avg): {data['statistics']['cpu_usage']['mean']:.1f}%"
)
async def run_with_timeout(
self, timeout: int = 300
) -> Dict[str, Any]:
"""Run benchmark with timeout"""
try:
return await asyncio.wait_for(
self.run_benchmark(), timeout
)
except asyncio.TimeoutError:
logger.error(
f"Benchmark timed out after {timeout} seconds"
)
raise
def cleanup(self):
"""Cleanup resources"""
self.process_pool.shutdown()
self.thread_pool.shutdown()
self._query_cache.clear()
async def main():
try:
# Create and run benchmark
benchmark = AgentBenchmark(num_iterations=1)
# Run benchmark with timeout
results = await benchmark.run_with_timeout(timeout=300)
# Save results
benchmark.save_results(results)
# Print summary
benchmark.print_summary(results)
except Exception as e:
logger.error(f"Benchmark failed: {e}")
finally:
# Cleanup resources
benchmark.cleanup()
if __name__ == "__main__":
# Run the async main function
asyncio.run(main())
Loading…
Cancel
Save