You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.3 KiB
143 lines
5.3 KiB
## LLMs in Swarms Documentation
|
|
|
|
Welcome to the documentation for the llm section of the swarms package, designed to facilitate seamless integration with various AI language models and APIs. This package empowers developers, end-users, and system administrators to interact with AI models from different providers, such as OpenAI, Hugging Face, Google PaLM, and Anthropic.
|
|
|
|
### Table of Contents
|
|
1. [OpenAI](#openai)
|
|
2. [HuggingFace](#huggingface)
|
|
3. [Google PaLM](#google-palm)
|
|
4. [Anthropic](#anthropic)
|
|
|
|
### 1. OpenAI (swarms.agents.models.OpenAI)
|
|
|
|
The OpenAI class provides an interface to interact with OpenAI's language models. It allows both synchronous and asynchronous interactions.
|
|
|
|
**Constructor:**
|
|
```python
|
|
OpenAI(api_key: str, system: str = None, console: bool = True, model: str = None, params: dict = None, save_messages: bool = True)
|
|
```
|
|
|
|
**Attributes:**
|
|
- `api_key` (str): Your OpenAI API key.
|
|
- `system` (str, optional): A system message to be used in conversations.
|
|
- `console` (bool, default=True): Display console logs.
|
|
- `model` (str, optional): Name of the language model to use.
|
|
- `params` (dict, optional): Additional parameters for model interactions.
|
|
- `save_messages` (bool, default=True): Save conversation messages.
|
|
|
|
**Methods:**
|
|
- `generate(message: str, **kwargs) -> str`: Generate a response using the OpenAI model.
|
|
- `generate_async(message: str, **kwargs) -> str`: Generate a response asynchronously.
|
|
- `ask_multiple(ids: List[str], question_template: str) -> List[str]`: Query multiple IDs simultaneously.
|
|
- `stream_multiple(ids: List[str], question_template: str) -> List[str]`: Stream multiple responses.
|
|
|
|
**Usage Example:**
|
|
```python
|
|
from swarms import OpenAI
|
|
import asyncio
|
|
|
|
chat = OpenAI(api_key="YOUR_OPENAI_API_KEY")
|
|
|
|
response = chat.generate("Hello, how can I assist you?")
|
|
print(response)
|
|
|
|
ids = ["id1", "id2", "id3"]
|
|
async_responses = asyncio.run(chat.ask_multiple(ids, "How is {id}?"))
|
|
print(async_responses)
|
|
```
|
|
|
|
### 2. HuggingFace (swarms.agents.models.HuggingFaceLLM)
|
|
|
|
The HuggingFaceLLM class allows interaction with language models from Hugging Face.
|
|
|
|
**Constructor:**
|
|
```python
|
|
HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None)
|
|
```
|
|
|
|
**Attributes:**
|
|
- `model_id` (str): ID or name of the Hugging Face model.
|
|
- `device` (str, optional): Device to run the model on (e.g., 'cuda', 'cpu').
|
|
- `max_length` (int, default=20): Maximum length of generated text.
|
|
- `quantize` (bool, default=False): Apply model quantization.
|
|
- `quantization_config` (dict, optional): Configuration for quantization.
|
|
|
|
**Methods:**
|
|
- `generate(prompt_text: str, max_length: int = None) -> str`: Generate text based on a prompt.
|
|
|
|
**Usage Example:**
|
|
```python
|
|
from swarms import HuggingFaceLLM
|
|
|
|
model_id = "gpt2"
|
|
hugging_face_model = HuggingFaceLLM(model_id=model_id)
|
|
|
|
prompt = "Once upon a time"
|
|
generated_text = hugging_face_model.generate(prompt)
|
|
print(generated_text)
|
|
```
|
|
|
|
### 3. Google PaLM (swarms.agents.models.GooglePalm)
|
|
|
|
The GooglePalm class provides an interface for Google's PaLM Chat API.
|
|
|
|
**Constructor:**
|
|
```python
|
|
GooglePalm(model_name: str = "models/chat-bison-001", google_api_key: str = None, temperature: float = None, top_p: float = None, top_k: int = None, n: int = 1)
|
|
```
|
|
|
|
**Attributes:**
|
|
- `model_name` (str): Name of the Google PaLM model.
|
|
- `google_api_key` (str, optional): Google API key.
|
|
- `temperature` (float, optional): Temperature for text generation.
|
|
- `top_p` (float, optional): Top-p sampling value.
|
|
- `top_k` (int, optional): Top-k sampling value.
|
|
- `n` (int, default=1): Number of candidate completions.
|
|
|
|
**Methods:**
|
|
- `generate(messages: List[Dict[str, Any]], stop: List[str] = None, **kwargs) -> Dict[str, Any]`: Generate text based on a list of messages.
|
|
- `__call__(messages: List[Dict[str, Any]], stop: List[str] = None, **kwargs) -> Dict[str, Any]`: Generate text using the call syntax.
|
|
|
|
**Usage Example:**
|
|
```python
|
|
from swarms import GooglePalm
|
|
|
|
google_palm = GooglePalm()
|
|
messages = [{"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "Tell me a joke"}]
|
|
|
|
response = google_palm.generate(messages)
|
|
print(response["choices"][0]["text"])
|
|
```
|
|
|
|
### 4. Anthropic (swarms.agents.models.Anthropic)
|
|
|
|
The Anthropic class enables interaction with Anthropic's large language models.
|
|
|
|
**Constructor:**
|
|
```python
|
|
Anthropic(model: str = "claude-2", max_tokens_to_sample: int = 256, temperature: float = None, top_k: int = None, top_p: float = None, streaming: bool = False, default_request_timeout: int = None)
|
|
```
|
|
|
|
**Attributes:**
|
|
- `model` (str): Name of the Anthropic model.
|
|
- `max_tokens_to_sample` (int, default=256): Maximum tokens to sample.
|
|
- `temperature` (float, optional): Temperature for text generation.
|
|
- `top_k` (int, optional): Top-k sampling value.
|
|
- `top_p` (float, optional): Top-p sampling value.
|
|
- `streaming` (bool, default=False): Enable streaming mode.
|
|
- `default_request_timeout` (int, optional): Default request timeout.
|
|
|
|
**Methods:**
|
|
- `generate(prompt: str, stop: List[str] = None) -> str`: Generate text based on a prompt.
|
|
|
|
**Usage Example:**
|
|
```python
|
|
from swarms import Anthropic
|
|
|
|
anthropic = Anthropic()
|
|
prompt = "Once upon a time"
|
|
generated_text = anthropic.generate(prompt)
|
|
print(generated_text)
|
|
```
|
|
|
|
This concludes the documentation for the "swarms" package, providing you with tools to seamlessly integrate with various language models and APIs. Happy coding! |