You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/old-docs/workers/WorkerNode.md

6.6 KiB

Swarms Documentation

====================

Worker Node


The WorkerNode class is a powerful component of the Swarms framework. It is designed to spawn an autonomous agent instance as a worker to accomplish complex tasks. It can search the internet, spawn child multi-modality models to process and generate images, text, audio, and so on.

WorkerNodeInitializer

The WorkerNodeInitializer class is used to initialize a worker node.

Initialization


WorkerNodeInitializer(openai_api_key: str,

llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,

tools: Optional[List[Tool]] = None,

worker_name: Optional[str] = "Swarm Worker AI Assistant",

worker_role: Optional[str] = "Assistant",

human_in_the_loop: Optional[bool] = False,

search_kwargs: dict = {},

verbose: Optional[bool] = False,

chat_history_file: str = "chat_history.txt")

Copy code

Parameters
  • openai_api_key (str): The OpenAI API key.

  • llm (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is ChatOpenAI.

  • tools (List[Tool], optional): The tools to use.

  • worker_name (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant".

  • worker_role (str, optional): The role of the worker. Default is "Assistant".

  • human_in_the_loop (bool, optional): Whether to include a human in the loop. Default is False.

  • search_kwargs (dict, optional): The keyword arguments for the search.

  • verbose (bool, optional): Whether to print verbose output. Default is False.

  • chat_history_file (str, optional): The file to store the chat history. Default is "chat_history.txt".

Example

from swarms.tools.autogpt import DuckDuckGoSearchRun

worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key",

tools=[DuckDuckGoSearchRun()],

worker_name="My Worker",

worker_role="Assistant",

human_in_the_loop=True)

Copy code

WorkerNode

The WorkerNode class is used to create a worker node.

Initialization


WorkerNode(openai_api_key: str,

temperature: int,

llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,

tools: Optional[List[Tool]] = None,

worker_name: Optional[str] = "Swarm Worker AI Assistant",

worker_role: Optional[str] = "Assistant",

human_in_the_loop: Optional[bool] = False,

search_kwargs: dict = {},

verbose: Optional[bool] = False,

chat_history_file: str = "chat_history.txt")

Copy code

Parameters
  • openai_api_key (str): The OpenAI API key.

  • temperature (int): The temperature for the language model.

  • llm (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is ChatOpenAI.

  • tools (List[Tool], optional): The tools to use.

  • worker_name (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant".

  • worker_role (str, optional): The role of the worker. Default is "Assistant".

  • human_in_the_loop (bool, optional): Whether to include a human in the loop. Default is False.

  • search_kwargs (dict, optional): The keyword arguments for the search.

  • verbose (bool, optional): Whether to print verbose output. Default is False.

  • chat_history_file (str, optional): The file to store the chat history. Default is "chat_history.txt".

Example

worker_node = WorkerNode(openai_api_key="your_openai_api_key",

temperature=0.8,

tools=[DuckDuckGoSearchRun()],

worker_name="My Worker",

worker_role="As```

tools=[DuckDuckGoSearchRun()],

worker_name="My Worker",

worker_role="Assistant",

human_in_the_loop=True)

# Create a worker node

worker_node = WorkerNode(openai_api_key="your_openai_api_key",

temperature=0.8,

tools=[DuckDuckGoSearchRun()],

worker_name="My Worker",

worker_role="Assistant",

human_in_the_loop=True)

# Add a tool to the worker node

worker_node_initializer.add_tool(DuckDuckGoSearchRun())

# Initialize the language model and tools for the worker node

worker_node.initialize_llm(ChatOpenAI, temperature=0.8)

worker_node.initialize_tools(ChatOpenAI)

# Create the worker node

worker_node.create_worker_node(worker_name="My Worker Node",

worker_role="Assistant",

human_in_the_loop=True,

llm_class=ChatOpenAI,

search_kwargs={})

# Run the worker node

`worker_node.run("Hello, world!")`

In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt.

This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.

Thanks for becoming an alpha build user, email kye@apac.ai with all complaintssistant",

human_in_the_loop=True)

Copy code

Full Example

Here is a full example of how to use the WorkerNode and WorkerNodeInitializer classes:


from swarms.tools.autogpt import DuckDuckGoSearchRun

from swarms.worker_node import WorkerNode, WorkerNodeInitializer

# Initialize a worker node

worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key",

tools=[DuckDuckGoSearchRun()],

worker_name="My Worker",

worker_role="Assistant",

human_in_the_loop=True)

# Create a worker node

worker_node = WorkerNode(openai_api_key="your_openai_api_key",

temperature=0.8,

tools=[DuckDuckGoSearchRun()],

worker_name="My Worker",

worker_role="Assistant",

human_in_the_loop=True)

# Add a tool to the worker node

worker_node_initializer.add_tool(DuckDuckGoSearchRun())

# Initialize the language model and tools for the worker node

worker_node.initialize_llm(ChatOpenAI, temperature=0.8)

worker_node.initialize_tools(ChatOpenAI)

# Create the worker node

worker_node.create_worker_node(worker_name="My Worker Node",

worker_role="Assistant",

human_in_the_loop=True,

llm_class=ChatOpenAI,

search_kwargs={})

# Run the worker node

worker_node.run("Hello, world!")

In this example, we first initialize a WorkerNodeInitializer and a WorkerNode. We then add a tool to the WorkerNodeInitializer and initialize the language model and tools for the WorkerNode. Finally, we create the worker node and run it with a given prompt.

This example shows how you can use the WorkerNode and WorkerNodeInitializer classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.