You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/old-docs/workers/WorkerNode.md

275 lines
6.6 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

Swarms Documentation
====================
Worker Node
-----------
The `WorkerNode` class is a powerful component of the Swarms framework. It is designed to spawn an autonomous agent instance as a worker to accomplish complex tasks. It can search the internet, spawn child multi-modality models to process and generate images, text, audio, and so on.
### WorkerNodeInitializer
The `WorkerNodeInitializer` class is used to initialize a worker node.
#### Initialization
```
WorkerNodeInitializer(openai_api_key: str,
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
worker_name: Optional[str] = "Swarm Worker AI Assistant",
worker_role: Optional[str] = "Assistant",
human_in_the_loop: Optional[bool] = False,
search_kwargs: dict = {},
verbose: Optional[bool] = False,
chat_history_file: str = "chat_history.txt")
```
Copy code
##### Parameters
- `openai_api_key` (str): The OpenAI API key.
- `llm` (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is `ChatOpenAI`.
- `tools` (List[Tool], optional): The tools to use.
- `worker_name` (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant".
- `worker_role` (str, optional): The role of the worker. Default is "Assistant".
- `human_in_the_loop` (bool, optional): Whether to include a human in the loop. Default is False.
- `search_kwargs` (dict, optional): The keyword arguments for the search.
- `verbose` (bool, optional): Whether to print verbose output. Default is False.
- `chat_history_file` (str, optional): The file to store the chat history. Default is "chat_history.txt".
##### Example
```
from swarms.tools.autogpt import DuckDuckGoSearchRun
worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key",
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
```
Copy code
### WorkerNode
The `WorkerNode` class is used to create a worker node.
#### Initialization
```
WorkerNode(openai_api_key: str,
temperature: int,
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
worker_name: Optional[str] = "Swarm Worker AI Assistant",
worker_role: Optional[str] = "Assistant",
human_in_the_loop: Optional[bool] = False,
search_kwargs: dict = {},
verbose: Optional[bool] = False,
chat_history_file: str = "chat_history.txt")
```
Copy code
##### Parameters
- `openai_api_key` (str): The OpenAI API key.
- `temperature` (int): The temperature for the language model.
- `llm` (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is `ChatOpenAI`.
- `tools` (List[Tool], optional): The tools to use.
- `worker_name` (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant".
- `worker_role` (str, optional): The role of the worker. Default is "Assistant".
- `human_in_the_loop` (bool, optional): Whether to include a human in the loop. Default is False.
- `search_kwargs` (dict, optional): The keyword arguments for the search.
- `verbose` (bool, optional): Whether to print verbose output. Default is False.
- `chat_history_file` (str, optional): The file to store the chat history. Default is "chat_history.txt".
##### Example
```
worker_node = WorkerNode(openai_api_key="your_openai_api_key",
temperature=0.8,
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="As```
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Create a worker node
worker_node = WorkerNode(openai_api_key="your_openai_api_key",
temperature=0.8,
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Add a tool to the worker node
worker_node_initializer.add_tool(DuckDuckGoSearchRun())
# Initialize the language model and tools for the worker node
worker_node.initialize_llm(ChatOpenAI, temperature=0.8)
worker_node.initialize_tools(ChatOpenAI)
# Create the worker node
worker_node.create_worker_node(worker_name="My Worker Node",
worker_role="Assistant",
human_in_the_loop=True,
llm_class=ChatOpenAI,
search_kwargs={})
# Run the worker node
`worker_node.run("Hello, world!")`
In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt.
This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.
Thanks for becoming an alpha build user, email kye@apac.ai with all complaintssistant",
human_in_the_loop=True)
```
Copy code
### Full Example
Here is a full example of how to use the `WorkerNode` and `WorkerNodeInitializer` classes:
```python
from swarms.tools.autogpt import DuckDuckGoSearchRun
from swarms.worker_node import WorkerNode, WorkerNodeInitializer
# Initialize a worker node
worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key",
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Create a worker node
worker_node = WorkerNode(openai_api_key="your_openai_api_key",
temperature=0.8,
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Add a tool to the worker node
worker_node_initializer.add_tool(DuckDuckGoSearchRun())
# Initialize the language model and tools for the worker node
worker_node.initialize_llm(ChatOpenAI, temperature=0.8)
worker_node.initialize_tools(ChatOpenAI)
# Create the worker node
worker_node.create_worker_node(worker_name="My Worker Node",
worker_role="Assistant",
human_in_the_loop=True,
llm_class=ChatOpenAI,
search_kwargs={})
# Run the worker node
worker_node.run("Hello, world!")
```
In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt.
This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.