You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/swarms/structs/matrix_swarm.md

247 lines
5.3 KiB

# MatrixSwarm
The `MatrixSwarm` class provides a framework for managing and operating on matrices of AI agents, enabling matrix-like operations similar to linear algebra. This allows for complex agent interactions and parallel processing capabilities.
## Overview
`MatrixSwarm` treats AI agents as elements in a matrix, allowing for operations like addition, multiplication, and transposition. This approach enables sophisticated agent orchestration and parallel processing patterns.
## Installation
```bash
pip3 install -U swarms
```
## Basic Usage
```python
from swarms import Agent
from swarms.matrix import MatrixSwarm
# Create a 2x2 matrix of agents
agents = [
[Agent(agent_name="Agent-0-0"), Agent(agent_name="Agent-0-1")],
[Agent(agent_name="Agent-1-0"), Agent(agent_name="Agent-1-1")]
]
# Initialize the matrix
matrix = MatrixSwarm(agents)
```
## Class Constructor
```python
def __init__(self, agents: List[List[Agent]])
```
### Parameters
- `agents` (`List[List[Agent]]`): A 2D list of Agent instances representing the matrix.
### Raises
- `ValueError`: If the input is not a valid 2D list of Agent instances.
## Methods
### transpose()
Transposes the matrix of agents by swapping rows and columns.
```python
def transpose(self) -> MatrixSwarm
```
#### Returns
- `MatrixSwarm`: A new MatrixSwarm instance with transposed dimensions.
---
### add(other)
Performs element-wise addition of two agent matrices.
```python
def add(self, other: MatrixSwarm) -> MatrixSwarm
```
#### Parameters
- `other` (`MatrixSwarm`): Another MatrixSwarm instance to add.
#### Returns
- `MatrixSwarm`: A new MatrixSwarm resulting from the addition.
#### Raises
- `ValueError`: If matrix dimensions are incompatible.
---
### scalar_multiply(scalar)
Scales the matrix by duplicating agents along rows.
```python
def scalar_multiply(self, scalar: int) -> MatrixSwarm
```
#### Parameters
- `scalar` (`int`): The multiplication factor.
#### Returns
- `MatrixSwarm`: A new MatrixSwarm with scaled dimensions.
---
### multiply(other, inputs)
Performs matrix multiplication (dot product) between two agent matrices.
```python
def multiply(self, other: MatrixSwarm, inputs: List[str]) -> List[List[AgentOutput]]
```
#### Parameters
- `other` (`MatrixSwarm`): The second MatrixSwarm for multiplication.
- `inputs` (`List[str]`): Input queries for the agents.
#### Returns
- `List[List[AgentOutput]]`: Matrix of operation results.
#### Raises
- `ValueError`: If matrix dimensions are incompatible for multiplication.
---
### subtract(other)
Performs element-wise subtraction of two agent matrices.
```python
def subtract(self, other: MatrixSwarm) -> MatrixSwarm
```
#### Parameters
- `other` (`MatrixSwarm`): Another MatrixSwarm to subtract.
#### Returns
- `MatrixSwarm`: A new MatrixSwarm resulting from the subtraction.
---
### identity(size)
Creates an identity matrix of agents.
```python
def identity(self, size: int) -> MatrixSwarm
```
#### Parameters
- `size` (`int`): Size of the identity matrix (NxN).
#### Returns
- `MatrixSwarm`: An identity MatrixSwarm.
---
### determinant()
Computes the determinant of a square agent matrix.
```python
def determinant(self) -> Any
```
#### Returns
- `Any`: The determinant result.
#### Raises
- `ValueError`: If the matrix is not square.
---
### save_to_file(path)
Saves the matrix structure and metadata to a JSON file.
```python
def save_to_file(self, path: str) -> None
```
#### Parameters
- `path` (`str`): File path for saving the matrix data.
## Extended Example
Here's a comprehensive example demonstrating various MatrixSwarm operations:
```python
from swarms import Agent
from swarms.matrix import MatrixSwarm
# Create agents with specific configurations
agents = [
[
Agent(
agent_name=f"Agent-{i}-{j}",
system_prompt="Your system prompt here",
model_name="gpt-4",
max_loops=1,
verbose=True
) for j in range(2)
] for i in range(2)
]
# Initialize matrix
matrix = MatrixSwarm(agents)
# Example operations
transposed = matrix.transpose()
scaled = matrix.scalar_multiply(2)
# Run operations with inputs
inputs = ["Query 1", "Query 2"]
results = matrix.multiply(transposed, inputs)
# Save results
matrix.save_to_file("matrix_results.json")
```
## Output Schema
The `AgentOutput` class defines the structure for operation results:
```python
class AgentOutput(BaseModel):
agent_name: str
input_query: str
output_result: Any
metadata: dict
```
## Best Practices
1. **Initialization**
- Ensure all agents in the matrix are properly configured before initialization
- Validate matrix dimensions for your use case
2. **Operation Performance**
- Consider computational costs for large matrices
- Use appropriate batch sizes for inputs
3. **Error Handling**
- Implement proper error handling for agent operations
- Validate inputs before matrix operations
4. **Resource Management**
- Monitor agent resource usage in large matrices
- Implement proper cleanup procedures
## Limitations
- Matrix operations are constrained by the underlying agent capabilities
- Performance may vary based on agent configuration and complexity
- Resource usage scales with matrix dimensions
## See Also
- [Swarms Documentation](https://github.com/kyegomez/swarms)
- [Agent Class Reference](https://github.com/kyegomez/swarms/tree/main/swarms)