You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
9.1 KiB
9.1 KiB
AsyncWorkflow Documentation
The AsyncWorkflow
class represents an asynchronous workflow that executes tasks concurrently using multiple agents. It allows for efficient task management, leveraging Python's asyncio
for concurrent execution.
Key Features
- Concurrent Task Execution: Distribute tasks across multiple agents asynchronously.
- Configurable Workers: Limit the number of concurrent workers (agents) for better resource management.
- Autosave Results: Optionally save the task execution results automatically.
- Verbose Logging: Enable detailed logging to monitor task execution.
- Error Handling: Gracefully handles exceptions raised by agents during task execution.
Attributes
Attribute | Type | Description |
---|---|---|
name |
str |
The name of the workflow. |
agents |
List[Agent] |
A list of agents participating in the workflow. |
max_workers |
int |
The maximum number of concurrent workers (default: 5). |
dashboard |
bool |
Whether to display a dashboard (currently not implemented). |
autosave |
bool |
Whether to autosave task results (default: False ). |
verbose |
bool |
Whether to enable detailed logging (default: False ). |
task_pool |
List |
A pool of tasks to be executed. |
results |
List |
A list to store results of executed tasks. |
loop |
asyncio.EventLoop |
The event loop for asynchronous execution. |
Description:
Initializes the AsyncWorkflow
with specified agents, configuration, and options.
Parameters:
name
(str
): Name of the workflow. Default: "AsyncWorkflow".agents
(List[Agent]
): A list of agents. Default:None
.max_workers
(int
): The maximum number of workers. Default:5
.dashboard
(bool
): Enable dashboard visualization (placeholder for future implementation).autosave
(bool
): Enable autosave of task results. Default:False
.verbose
(bool
): Enable detailed logging. Default:False
.**kwargs
: Additional parameters forBaseWorkflow
.
_execute_agent_task
async def _execute_agent_task(self, agent: Agent, task: str) -> Any:
Description: Executes a single task asynchronously using a given agent.
Parameters:
agent
(Agent
): The agent responsible for executing the task.task
(str
): The task to be executed.
Returns:
Any
: The result of the task execution or an error message in case of an exception.
Example:
result = await workflow._execute_agent_task(agent, "Sample Task")
run
async def run(self, task: str) -> List[Any]:
Description: Executes the specified task concurrently across all agents.
Parameters:
task
(str
): The task to be executed by all agents.
Returns:
List[Any]
: A list of results or error messages returned by the agents.
Raises:
ValueError
: If no agents are provided in the workflow.
Example:
import asyncio
agents = [Agent("Agent1"), Agent("Agent2")]
workflow = AsyncWorkflow(agents=agents, verbose=True)
results = asyncio.run(workflow.run("Process Data"))
print(results)
Production-Grade Financial Example: Multiple Agents
Example: Stock Analysis and Investment Strategy
import asyncio
from typing import List
from swarm_models import OpenAIChat
from swarms.structs.async_workflow import (
SpeakerConfig,
SpeakerRole,
create_default_workflow,
run_workflow_with_retry,
)
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
from swarms.structs.agent import Agent
async def create_specialized_agents() -> List[Agent]:
"""Create a set of specialized agents for financial analysis"""
# Base model configuration
model = OpenAIChat(model_name="gpt-4o")
# Financial Analysis Agent
financial_agent = Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Personal finance advisor agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT
+ "Output the <DONE> token when you're done creating a portfolio of etfs, index, funds, and more for AI",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
return_step_meta=False,
output_type="str",
auto_generate_prompt=False,
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="financial_agent.json",
interactive=False,
)
# Risk Assessment Agent
risk_agent = Agent(
agent_name="Risk-Assessment-Agent",
agent_description="Investment risk analysis specialist",
system_prompt="Analyze investment risks and provide risk scores. Output <DONE> when analysis is complete.",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
output_type="str",
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="risk_agent.json",
interactive=False,
)
# Market Research Agent
research_agent = Agent(
agent_name="Market-Research-Agent",
agent_description="AI and tech market research specialist",
system_prompt="Research AI market trends and growth opportunities. Output <DONE> when research is complete.",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
output_type="str",
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="research_agent.json",
interactive=False,
)
return [financial_agent, risk_agent, research_agent]
async def main():
# Create specialized agents
agents = await create_specialized_agents()
# Create workflow with group chat enabled
workflow = create_default_workflow(
agents=agents,
name="AI-Investment-Analysis-Workflow",
enable_group_chat=True,
)
# Configure speaker roles
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.COORDINATOR,
agent=agents[0], # Financial agent as coordinator
priority=1,
concurrent=False,
required=True,
)
)
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.CRITIC,
agent=agents[1], # Risk agent as critic
priority=2,
concurrent=True,
)
)
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.EXECUTOR,
agent=agents[2], # Research agent as executor
priority=2,
concurrent=True,
)
)
# Investment analysis task
investment_task = """
Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities:
1. Identify high-growth AI ETFs and index funds
2. Analyze risks and potential returns
3. Create a diversified portfolio allocation
4. Provide market trend analysis
Present the results in a structured markdown format.
"""
try:
# Run workflow with retry
result = await run_workflow_with_retry(
workflow=workflow, task=investment_task, max_retries=3
)
print("\nWorkflow Results:")
print("================")
# Process and display agent outputs
for output in result.agent_outputs:
print(f"\nAgent: {output.agent_name}")
print("-" * (len(output.agent_name) + 8))
print(output.output)
# Display group chat history if enabled
if workflow.enable_group_chat:
print("\nGroup Chat Discussion:")
print("=====================")
for msg in workflow.speaker_system.message_history:
print(f"\n{msg.role} ({msg.agent_name}):")
print(msg.content)
# Save detailed results
if result.metadata.get("shared_memory_keys"):
print("\nShared Insights:")
print("===============")
for key in result.metadata["shared_memory_keys"]:
value = workflow.shared_memory.get(key)
if value:
print(f"\n{key}:")
print(value)
except Exception as e:
print(f"Workflow failed: {str(e)}")
finally:
await workflow.cleanup()
if __name__ == "__main__":
# Run the example
asyncio.run(main())