You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/swarms/structs/async_workflow.md

9.1 KiB

AsyncWorkflow Documentation

The AsyncWorkflow class represents an asynchronous workflow that executes tasks concurrently using multiple agents. It allows for efficient task management, leveraging Python's asyncio for concurrent execution.

Key Features

  • Concurrent Task Execution: Distribute tasks across multiple agents asynchronously.
  • Configurable Workers: Limit the number of concurrent workers (agents) for better resource management.
  • Autosave Results: Optionally save the task execution results automatically.
  • Verbose Logging: Enable detailed logging to monitor task execution.
  • Error Handling: Gracefully handles exceptions raised by agents during task execution.

Attributes

Attribute Type Description
name str The name of the workflow.
agents List[Agent] A list of agents participating in the workflow.
max_workers int The maximum number of concurrent workers (default: 5).
dashboard bool Whether to display a dashboard (currently not implemented).
autosave bool Whether to autosave task results (default: False).
verbose bool Whether to enable detailed logging (default: False).
task_pool List A pool of tasks to be executed.
results List A list to store results of executed tasks.
loop asyncio.EventLoop The event loop for asynchronous execution.

Description: Initializes the AsyncWorkflow with specified agents, configuration, and options.

Parameters:

  • name (str): Name of the workflow. Default: "AsyncWorkflow".
  • agents (List[Agent]): A list of agents. Default: None.
  • max_workers (int): The maximum number of workers. Default: 5.
  • dashboard (bool): Enable dashboard visualization (placeholder for future implementation).
  • autosave (bool): Enable autosave of task results. Default: False.
  • verbose (bool): Enable detailed logging. Default: False.
  • **kwargs: Additional parameters for BaseWorkflow.

_execute_agent_task

async def _execute_agent_task(self, agent: Agent, task: str) -> Any:

Description: Executes a single task asynchronously using a given agent.

Parameters:

  • agent (Agent): The agent responsible for executing the task.
  • task (str): The task to be executed.

Returns:

  • Any: The result of the task execution or an error message in case of an exception.

Example:

result = await workflow._execute_agent_task(agent, "Sample Task")

run

async def run(self, task: str) -> List[Any]:

Description: Executes the specified task concurrently across all agents.

Parameters:

  • task (str): The task to be executed by all agents.

Returns:

  • List[Any]: A list of results or error messages returned by the agents.

Raises:

  • ValueError: If no agents are provided in the workflow.

Example:

import asyncio

agents = [Agent("Agent1"), Agent("Agent2")]
workflow = AsyncWorkflow(agents=agents, verbose=True)

results = asyncio.run(workflow.run("Process Data"))
print(results)

Production-Grade Financial Example: Multiple Agents

Example: Stock Analysis and Investment Strategy


import asyncio
from typing import List

from swarm_models import OpenAIChat

from swarms.structs.async_workflow import (
    SpeakerConfig,
    SpeakerRole,
    create_default_workflow,
    run_workflow_with_retry,
)
from swarms.prompts.finance_agent_sys_prompt import (
    FINANCIAL_AGENT_SYS_PROMPT,
)
from swarms.structs.agent import Agent


async def create_specialized_agents() -> List[Agent]:
    """Create a set of specialized agents for financial analysis"""

    # Base model configuration
    model = OpenAIChat(model_name="gpt-4o")

    # Financial Analysis Agent
    financial_agent = Agent(
        agent_name="Financial-Analysis-Agent",
        agent_description="Personal finance advisor agent",
        system_prompt=FINANCIAL_AGENT_SYS_PROMPT
        + "Output the <DONE> token when you're done creating a portfolio of etfs, index, funds, and more for AI",
        max_loops=1,
        llm=model,
        dynamic_temperature_enabled=True,
        user_name="Kye",
        retry_attempts=3,
        context_length=8192,
        return_step_meta=False,
        output_type="str",
        auto_generate_prompt=False,
        max_tokens=4000,
        stopping_token="<DONE>",
        saved_state_path="financial_agent.json",
        interactive=False,
    )

    # Risk Assessment Agent
    risk_agent = Agent(
        agent_name="Risk-Assessment-Agent",
        agent_description="Investment risk analysis specialist",
        system_prompt="Analyze investment risks and provide risk scores. Output <DONE> when analysis is complete.",
        max_loops=1,
        llm=model,
        dynamic_temperature_enabled=True,
        user_name="Kye",
        retry_attempts=3,
        context_length=8192,
        output_type="str",
        max_tokens=4000,
        stopping_token="<DONE>",
        saved_state_path="risk_agent.json",
        interactive=False,
    )

    # Market Research Agent
    research_agent = Agent(
        agent_name="Market-Research-Agent",
        agent_description="AI and tech market research specialist",
        system_prompt="Research AI market trends and growth opportunities. Output <DONE> when research is complete.",
        max_loops=1,
        llm=model,
        dynamic_temperature_enabled=True,
        user_name="Kye",
        retry_attempts=3,
        context_length=8192,
        output_type="str",
        max_tokens=4000,
        stopping_token="<DONE>",
        saved_state_path="research_agent.json",
        interactive=False,
    )

    return [financial_agent, risk_agent, research_agent]


async def main():
    # Create specialized agents
    agents = await create_specialized_agents()

    # Create workflow with group chat enabled
    workflow = create_default_workflow(
        agents=agents,
        name="AI-Investment-Analysis-Workflow",
        enable_group_chat=True,
    )

    # Configure speaker roles
    workflow.speaker_system.add_speaker(
        SpeakerConfig(
            role=SpeakerRole.COORDINATOR,
            agent=agents[0],  # Financial agent as coordinator
            priority=1,
            concurrent=False,
            required=True,
        )
    )

    workflow.speaker_system.add_speaker(
        SpeakerConfig(
            role=SpeakerRole.CRITIC,
            agent=agents[1],  # Risk agent as critic
            priority=2,
            concurrent=True,
        )
    )

    workflow.speaker_system.add_speaker(
        SpeakerConfig(
            role=SpeakerRole.EXECUTOR,
            agent=agents[2],  # Research agent as executor
            priority=2,
            concurrent=True,
        )
    )

    # Investment analysis task
    investment_task = """
    Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities:
    1. Identify high-growth AI ETFs and index funds
    2. Analyze risks and potential returns
    3. Create a diversified portfolio allocation
    4. Provide market trend analysis
    Present the results in a structured markdown format.
    """

    try:
        # Run workflow with retry
        result = await run_workflow_with_retry(
            workflow=workflow, task=investment_task, max_retries=3
        )

        print("\nWorkflow Results:")
        print("================")

        # Process and display agent outputs
        for output in result.agent_outputs:
            print(f"\nAgent: {output.agent_name}")
            print("-" * (len(output.agent_name) + 8))
            print(output.output)

        # Display group chat history if enabled
        if workflow.enable_group_chat:
            print("\nGroup Chat Discussion:")
            print("=====================")
            for msg in workflow.speaker_system.message_history:
                print(f"\n{msg.role} ({msg.agent_name}):")
                print(msg.content)

        # Save detailed results
        if result.metadata.get("shared_memory_keys"):
            print("\nShared Insights:")
            print("===============")
            for key in result.metadata["shared_memory_keys"]:
                value = workflow.shared_memory.get(key)
                if value:
                    print(f"\n{key}:")
                    print(value)

    except Exception as e:
        print(f"Workflow failed: {str(e)}")

    finally:
        await workflow.cleanup()


if __name__ == "__main__":
    # Run the example
    asyncio.run(main())