You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/swarms/structs/group_chat.md

9.4 KiB

GroupChat Swarm Documentation

A production-grade multi-agent system enabling sophisticated group conversations between AI agents with customizable speaking patterns, parallel processing capabilities, and comprehensive conversation tracking.

Advanced Configuration

Agent Parameters

Parameter Type Default Description
agent_name str Required Unique identifier for the agent
system_prompt str Required Role and behavior instructions
llm Any Required Language model instance
max_loops int 1 Maximum conversation turns
autosave bool False Enable conversation saving
dashboard bool False Enable monitoring dashboard
verbose bool True Enable detailed logging
dynamic_temperature bool True Enable dynamic temperature
retry_attempts int 1 Failed request retry count
context_length int 200000 Maximum context window
output_type str "string" Response format type
streaming_on bool False Enable streaming responses

GroupChat Parameters

Parameter Type Default Description
name str "GroupChat" Chat group identifier
description str "" Purpose description
agents List[Agent] [] Participating agents
speaker_fn Callable round_robin Speaker selection function
max_loops int 10 Maximum conversation turns

Table of Contents

Installation

pip3 install swarms swarm-models loguru

Core Concepts

The GroupChat system consists of several key components:

  1. Agents: Individual AI agents with specialized knowledge and roles
  2. Speaker Functions: Control mechanisms for conversation flow
  3. Chat History: Structured conversation tracking
  4. Response Models: Pydantic models for data validation

Basic Usage


import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent, GroupChat, expertise_based


if __name__ == "__main__":

    load_dotenv()

    # Get the OpenAI API key from the environment variable
    api_key = os.getenv("OPENAI_API_KEY")

    # Create an instance of the OpenAIChat class
    model = OpenAIChat(
        openai_api_key=api_key,
        model_name="gpt-4o-mini",
        temperature=0.1,
    )

    # Example agents
    agent1 = Agent(
        agent_name="Financial-Analysis-Agent",
        system_prompt="You are a financial analyst specializing in investment strategies.",
        llm=model,
        max_loops=1,
        autosave=False,
        dashboard=False,
        verbose=True,
        dynamic_temperature_enabled=True,
        user_name="swarms_corp",
        retry_attempts=1,
        context_length=200000,
        output_type="string",
        streaming_on=False,
    )

    agent2 = Agent(
        agent_name="Tax-Adviser-Agent",
        system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
        llm=model,
        max_loops=1,
        autosave=False,
        dashboard=False,
        verbose=True,
        dynamic_temperature_enabled=True,
        user_name="swarms_corp",
        retry_attempts=1,
        context_length=200000,
        output_type="string",
        streaming_on=False,
    )

    agents = [agent1, agent2]

    chat = GroupChat(
        name="Investment Advisory",
        description="Financial and tax analysis group",
        agents=agents,
        speaker_fn=expertise_based,
    )

    history = chat.run(
        "How to optimize tax strategy for investments?"
    )
    print(history.model_dump_json(indent=2))

Speaker Functions

Built-in Functions

def round_robin(history: List[str], agent: Agent) -> bool:
    """
    Enables agents to speak in turns.
    Returns True for each agent in sequence.
    """
    return True

def expertise_based(history: List[str], agent: Agent) -> bool:
    """
    Enables agents to speak based on their expertise.
    Returns True if agent's role matches conversation context.
    """
    return agent.system_prompt.lower() in history[-1].lower() if history else True

def random_selection(history: List[str], agent: Agent) -> bool:
    """
    Randomly selects speaking agents.
    Returns True/False with 50% probability.
    """
    import random
    return random.choice([True, False])

def most_recent(history: List[str], agent: Agent) -> bool:
    """
    Enables agents to respond to their mentions.
    Returns True if agent was last speaker.
    """
    return agent.agent_name == history[-1].split(":")[0].strip() if history else True

Custom Speaker Function Example

def custom_speaker(history: List[str], agent: Agent) -> bool:
    """
    Custom speaker function with complex logic.
    
    Args:
        history: Previous conversation messages
        agent: Current agent being evaluated
        
    Returns:
        bool: Whether agent should speak
    """
    # No history - let everyone speak
    if not history:
        return True
        
    last_message = history[-1].lower()
    
    # Check for agent expertise keywords
    expertise_relevant = any(
        keyword in last_message 
        for keyword in agent.expertise_keywords
    )
    
    # Check for direct mentions
    mentioned = agent.agent_name.lower() in last_message
    
    # Check if agent hasn't spoken recently
    not_recent_speaker = not any(
        agent.agent_name in msg 
        for msg in history[-3:]
    )
    
    return expertise_relevant or mentioned or not_recent_speaker

# Usage
chat = GroupChat(
    agents=[agent1, agent2],
    speaker_fn=custom_speaker
)

Response Models

Complete Schema

class AgentResponse(BaseModel):
    """Individual agent response in a conversation turn"""
    agent_name: str
    role: str
    message: str
    timestamp: datetime = Field(default_factory=datetime.now)
    turn_number: int
    preceding_context: List[str] = Field(default_factory=list)

class ChatTurn(BaseModel):
    """Single turn in the conversation"""
    turn_number: int
    responses: List[AgentResponse]
    task: str
    timestamp: datetime = Field(default_factory=datetime.now)

class ChatHistory(BaseModel):
    """Complete conversation history"""
    turns: List[ChatTurn]
    total_messages: int
    name: str
    description: str
    start_time: datetime = Field(default_factory=datetime.now)

Advanced Examples

Multi-Agent Analysis Team

# Create specialized agents
data_analyst = Agent(
    agent_name="Data-Analyst",
    system_prompt="You analyze numerical data and patterns",
    llm=model
)

market_expert = Agent(
    agent_name="Market-Expert",
    system_prompt="You provide market insights and trends",
    llm=model
)

strategy_advisor = Agent(
    agent_name="Strategy-Advisor",
    system_prompt="You formulate strategic recommendations",
    llm=model
)

# Create analysis team
analysis_team = GroupChat(
    name="Market Analysis Team",
    description="Comprehensive market analysis group",
    agents=[data_analyst, market_expert, strategy_advisor],
    speaker_fn=expertise_based,
    max_loops=15
)

# Run complex analysis
history = analysis_team.run("""
    Analyze the current market conditions:
    1. Identify key trends
    2. Evaluate risks
    3. Recommend investment strategy
""")

Parallel Processing

# Define multiple analysis tasks
tasks = [
    "Analyze tech sector trends",
    "Evaluate real estate market",
    "Review commodity prices",
    "Assess global economic indicators"
]

# Run tasks concurrently
histories = chat.concurrent_run(tasks)

# Process results
for task, history in zip(tasks, histories):
    print(f"\nAnalysis for: {task}")
    for turn in history.turns:
        for response in turn.responses:
            print(f"{response.agent_name}: {response.message}")

Best Practices

  1. Agent Design

    • Give agents clear, specific roles
    • Use detailed system prompts
    • Set appropriate context lengths
    • Enable retries for reliability
  2. Speaker Functions

    • Match function to use case
    • Consider conversation flow
    • Handle edge cases
    • Add appropriate logging
  3. Error Handling

    • Use try-except blocks
    • Log errors appropriately
    • Implement retry logic
    • Provide fallback responses
  4. Performance

    • Use concurrent processing for multiple tasks
    • Monitor context lengths
    • Implement proper cleanup
    • Cache responses when appropriate

API Reference

GroupChat Methods

Method Description Arguments Returns
run Run single conversation task: str ChatHistory
batched_run Run multiple sequential tasks tasks: List[str] List[ChatHistory]
concurrent_run Run multiple parallel tasks tasks: List[str] List[ChatHistory]
get_recent_messages Get recent messages n: int = 3 List[str]

Agent Methods

Method Description Returns
run Process single task str
generate_response Generate LLM response str
save_context Save conversation context None