|
|
# Models Documentation
|
|
|
|
|
|
====================
|
|
|
|
|
|
## Language Models
|
|
|
|
|
|
---------------
|
|
|
|
|
|
Language models are the driving force of our agents. They are responsible for generating text based on a given prompt. We currently support two types of language models: Anthropic and HuggingFace.
|
|
|
|
|
|
### Anthropic
|
|
|
|
|
|
The `Anthropic` class is a wrapper for the Anthropic large language models.
|
|
|
|
|
|
#### Initialization
|
|
|
|
|
|
```
|
|
|
|
|
|
Anthropic(model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None)
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
##### Parameters
|
|
|
|
|
|
- `model` (str, optional): The name of the model to use. Default is "claude-2".
|
|
|
|
|
|
- `max_tokens_to_sample` (int, optional): The maximum number of tokens to sample. Default is 256.
|
|
|
|
|
|
- `temperature` (float, optional): The temperature to use for the generation. Higher values result in more random outputs.
|
|
|
|
|
|
- `top_k` (int, optional): The number of top tokens to consider for the generation.
|
|
|
|
|
|
- `top_p` (float, optional): The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling.
|
|
|
|
|
|
- `streaming` (bool, optional): Whether to use streaming mode. Default is False.
|
|
|
|
|
|
- `default_request_timeout` (int, optional): The default request timeout in seconds. Default is 600.
|
|
|
|
|
|
##### Example
|
|
|
|
|
|
```
|
|
|
|
|
|
anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8)
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
#### Generation
|
|
|
|
|
|
```
|
|
|
|
|
|
anthropic.generate(prompt, stop=None)
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
##### Parameters
|
|
|
|
|
|
- `prompt` (str): The prompt to use for the generation.
|
|
|
|
|
|
- `stop` (list, optional): A list of stop sequences. The generation will stop if one of these sequences is encountered.
|
|
|
|
|
|
##### Returns
|
|
|
|
|
|
- `str`: The generated text.
|
|
|
|
|
|
##### Example
|
|
|
|
|
|
```
|
|
|
|
|
|
prompt = "Once upon a time"
|
|
|
|
|
|
stop = ["The end"]
|
|
|
|
|
|
print(anthropic.generate(prompt, stop))
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### HuggingFaceLLM
|
|
|
|
|
|
The `HuggingFaceLLM` class is a wrapper for the HuggingFace language models.
|
|
|
|
|
|
#### Initialization
|
|
|
|
|
|
```
|
|
|
|
|
|
HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None)
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
##### Parameters
|
|
|
|
|
|
- `model_id` (str): The ID of the model to use.
|
|
|
|
|
|
- `device` (str, optional): The device to use for the generation. Default is "cuda" if available, otherwise "cpu".
|
|
|
|
|
|
- `max_length` (int, optional): The maximum length of the generated text. Default is 20.
|
|
|
|
|
|
- `quantize` (bool, optional): Whether to quantize the model. Default is False.
|
|
|
|
|
|
- `quantization_config` (dict, optional): The configuration for the quantization.
|
|
|
|
|
|
##### Example
|
|
|
|
|
|
```
|
|
|
|
|
|
huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50)
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
#### Generation
|
|
|
|
|
|
```
|
|
|
|
|
|
huggingface.generate(prompt_text: str, max_length: int = None)
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
##### Parameters
|
|
|
|
|
|
- `prompt_text` (str): The prompt to use for the generation.
|
|
|
|
|
|
- `max_length` (int, optional): The maximum length of the generated text. If not provided, the default value specified during initialization is used.
|
|
|
|
|
|
##### Returns
|
|
|
|
|
|
- `str`: The generated text.
|
|
|
|
|
|
##### Example
|
|
|
|
|
|
```
|
|
|
|
|
|
prompt = "Once upon a time"
|
|
|
|
|
|
print(huggingface.generate(prompt))
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
### Full Examples
|
|
|
|
|
|
```python
|
|
|
# Import the necessary classes
|
|
|
|
|
|
from swarms.models import Anthropic, HuggingFaceLLM
|
|
|
|
|
|
# Create an instance of the Anthropic class
|
|
|
|
|
|
anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8)
|
|
|
|
|
|
# Use the Anthropic instance to generate text
|
|
|
|
|
|
prompt = "Once upon a time"
|
|
|
|
|
|
stop = ["The end"]
|
|
|
|
|
|
print("Anthropic output:")
|
|
|
|
|
|
print(anthropic.generate(prompt, stop))
|
|
|
|
|
|
# Create an instance of the HuggingFaceLLM class
|
|
|
|
|
|
huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50)
|
|
|
|
|
|
# Use the HuggingFaceLLM instance to generate text
|
|
|
|
|
|
prompt = "Once upon a time"
|
|
|
|
|
|
print("\nHuggingFaceLLM output:")
|
|
|
|
|
|
print(huggingface.generate(prompt))
|
|
|
|
|
|
```
|
|
|
|