You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
677 lines
26 KiB
677 lines
26 KiB
# Swarms CLI Examples
|
|
|
|
This document provides comprehensive examples of how to use the Swarms CLI for various scenarios. Each example includes the complete command, expected output, and explanation.
|
|
|
|
## Table of Contents
|
|
|
|
- [Basic Usage Examples](#basic-usage-examples)
|
|
- [Agent Management Examples](#agent-management-examples)
|
|
- [Multi-Agent Workflow Examples](#multi-agent-workflow-examples)
|
|
- [Configuration Examples](#configuration-examples)
|
|
- [Advanced Usage Examples](#advanced-usage-examples)
|
|
- [Troubleshooting Examples](#troubleshooting-examples)
|
|
|
|
## Basic Usage Examples
|
|
|
|
### 1. Getting Started
|
|
|
|
#### Check CLI Installation
|
|
|
|
```bash
|
|
swarms help
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
_________
|
|
/ _____/_ _ _______ _______ _____ ______
|
|
\_____ \\ \/ \/ /\__ \\_ __ \/ \ / ___/
|
|
/ \\ / / __ \| | \/ Y Y \\___ \
|
|
/_______ / \/\_/ (____ /__| |__|_| /____ >
|
|
\/ \/ \/ \/
|
|
|
|
Available Commands
|
|
┌─────────────────┬─────────────────────────────────────────────────────────────┐
|
|
│ Command │ Description │
|
|
├─────────────────┼─────────────────────────────────────────────────────────────┤
|
|
│ onboarding │ Start the interactive onboarding process │
|
|
│ help │ Display this help message │
|
|
│ get-api-key │ Retrieve your API key from the platform │
|
|
│ check-login │ Verify login status and initialize cache │
|
|
│ run-agents │ Execute agents from your YAML configuration │
|
|
│ load-markdown │ Load agents from markdown files with YAML frontmatter │
|
|
│ agent │ Create and run a custom agent with specified parameters │
|
|
│ auto-upgrade │ Update Swarms to the latest version │
|
|
│ book-call │ Schedule a strategy session with our team │
|
|
│ autoswarm │ Generate and execute an autonomous swarm │
|
|
└─────────────────┴─────────────────────────────────────────────────────────────┘
|
|
```
|
|
|
|
#### Start Onboarding Process
|
|
```bash
|
|
swarms onboarding
|
|
```
|
|
|
|
This will start an interactive setup process to configure your environment.
|
|
|
|
#### Get API Key
|
|
|
|
```bash
|
|
swarms get-api-key
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
✓ API key page opened in your browser
|
|
```
|
|
|
|
#### Check Login Status
|
|
|
|
```bash
|
|
swarms check-login
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
✓ Authentication verified
|
|
```
|
|
|
|
#### Run Environment Setup Check
|
|
|
|
```bash
|
|
swarms setup-check
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
🔍 Running Swarms Environment Setup Check
|
|
|
|
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
│ Environment Check Results │
|
|
├─────────┬─────────────────────────┬─────────────────────────────────────────┤
|
|
│ Status │ Check │ Details │
|
|
├─────────┼─────────────────────────┼─────────────────────────────────────────┤
|
|
│ ✓ │ Python Version │ Python 3.11.5 │
|
|
│ ✓ │ Swarms Version │ Current version: 8.1.1 │
|
|
│ ✓ │ API Keys │ API keys found: OPENAI_API_KEY │
|
|
│ ✓ │ Dependencies │ All required dependencies available │
|
|
│ ✓ │ Environment File │ .env file exists with 1 API key(s) │
|
|
│ ⚠ │ Workspace Directory │ WORKSPACE_DIR environment variable is not set │
|
|
└─────────┴─────────────────────────┴─────────────────────────────────────────┘
|
|
|
|
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
│ Setup Check Complete │
|
|
├─────────────────────────────────────────────────────────────────────────────┤
|
|
│ ⚠️ Some checks failed. Please review the issues above. │
|
|
└─────────────────────────────────────────────────────────────────────────────┘
|
|
|
|
💡 Recommendations:
|
|
1. Set WORKSPACE_DIR environment variable: export WORKSPACE_DIR=/path/to/your/workspace
|
|
|
|
Run 'swarms setup-check' again after making changes to verify.
|
|
```
|
|
|
|
## Agent Management Examples
|
|
|
|
### 2. Creating Custom Agents
|
|
|
|
#### Basic Research Agent
|
|
|
|
```bash
|
|
swarms agent \
|
|
--name "Research Assistant" \
|
|
--description "AI research specialist for academic papers" \
|
|
--system-prompt "You are an expert research assistant specializing in academic research. You help users find, analyze, and synthesize information from various sources. Always provide well-structured, evidence-based responses." \
|
|
--task "Research the latest developments in quantum computing and provide a summary of key breakthroughs in the last 2 years" \
|
|
--model-name "gpt-4" \
|
|
--temperature 0.1 \
|
|
--max-loops 3
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
Creating custom agent: Research Assistant
|
|
[✓] Agent 'Research Assistant' completed the task successfully!
|
|
|
|
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
│ Agent Execution Results │
|
|
├─────────────────────────────────────────────────────────────────────────────┤
|
|
│ Agent Name: Research Assistant │
|
|
│ Model: gpt-4 │
|
|
│ Task: Research the latest developments in quantum computing... │
|
|
│ Result: │
|
|
│ Recent breakthroughs in quantum computing include: │
|
|
│ 1. Google's 53-qubit Sycamore processor achieving quantum supremacy │
|
|
│ 2. IBM's 433-qubit Osprey processor... │
|
|
│ ... │
|
|
└─────────────────────────────────────────────────────────────────────────────┘
|
|
```
|
|
|
|
#### Code Review Agent
|
|
|
|
```bash
|
|
swarms agent \
|
|
--name "Code Reviewer" \
|
|
--description "Expert code review assistant with security focus" \
|
|
--system-prompt "You are a senior software engineer specializing in code review, security analysis, and best practices. Review code for bugs, security vulnerabilities, performance issues, and adherence to coding standards." \
|
|
--task "Review this Python code for security vulnerabilities and suggest improvements: def process_user_input(data): return eval(data)" \
|
|
--model-name "gpt-4" \
|
|
--temperature 0.05 \
|
|
--max-loops 2 \
|
|
--verbose
|
|
```
|
|
|
|
#### Financial Analysis Agent
|
|
|
|
```bash
|
|
swarms agent \
|
|
--name "Financial Analyst" \
|
|
--description "Expert financial analyst for market research and investment advice" \
|
|
--system-prompt "You are a certified financial analyst with expertise in market analysis, investment strategies, and risk assessment. Provide data-driven insights and recommendations based on current market conditions." \
|
|
--task "Analyze the current state of the technology sector and provide investment recommendations for the next quarter" \
|
|
--model-name "gpt-4" \
|
|
--temperature 0.2 \
|
|
--max-loops 2 \
|
|
--output-type "json"
|
|
```
|
|
|
|
### 3. Advanced Agent Configuration
|
|
|
|
#### Agent with Dynamic Features
|
|
|
|
```bash
|
|
swarms agent \
|
|
--name "Adaptive Writer" \
|
|
--description "Content writer with dynamic temperature and context adjustment" \
|
|
--system-prompt "You are a professional content writer who adapts writing style based on audience and context. You can write in various tones from formal to casual, and adjust complexity based on the target audience." \
|
|
--task "Write a blog post about artificial intelligence for a general audience, explaining complex concepts in simple terms" \
|
|
--model-name "gpt-4" \
|
|
--dynamic-temperature-enabled \
|
|
--dynamic-context-window \
|
|
--context-length 8000 \
|
|
--retry-attempts 3 \
|
|
--return-step-meta \
|
|
--autosave \
|
|
--saved-state-path "./agent_states/"
|
|
```
|
|
|
|
#### Agent with MCP Integration
|
|
|
|
```bash
|
|
swarms agent \
|
|
--name "MCP Agent" \
|
|
--description "Agent with Model Context Protocol integration" \
|
|
--system-prompt "You are a agent with access to external tools and data sources through MCP. Use these capabilities to provide comprehensive and up-to-date information." \
|
|
--task "Search for recent news about climate change and summarize the key findings" \
|
|
--model-name "gpt-4" \
|
|
--mcp-url "https://api.example.com/mcp" \
|
|
--temperature 0.1 \
|
|
--max-loops 5
|
|
```
|
|
|
|
## Multi-Agent Workflow Examples
|
|
|
|
### 4. Running Agents from YAML Configuration
|
|
|
|
#### Create `research_team.yaml`
|
|
|
|
```yaml
|
|
agents:
|
|
- name: "Data Collector"
|
|
description: "Specialist in gathering and organizing data from various sources"
|
|
model_name: "gpt-4"
|
|
system_prompt: "You are a data collection specialist. Your role is to gather relevant information from multiple sources and organize it in a structured format."
|
|
temperature: 0.1
|
|
max_loops: 3
|
|
|
|
- name: "Data Analyzer"
|
|
description: "Expert in analyzing and interpreting complex datasets"
|
|
model_name: "gpt-4"
|
|
system_prompt: "You are a data analyst. Take the collected data and perform comprehensive analysis to identify patterns, trends, and insights."
|
|
temperature: 0.2
|
|
max_loops: 4
|
|
|
|
- name: "Report Writer"
|
|
description: "Professional writer who creates clear, compelling reports"
|
|
model_name: "gpt-4"
|
|
system_prompt: "You are a report writer. Take the analyzed data and create a comprehensive, well-structured report that communicates findings clearly."
|
|
temperature: 0.3
|
|
max_loops: 3
|
|
```
|
|
|
|
#### Execute the Team
|
|
|
|
```bash
|
|
swarms run-agents --yaml-file research_team.yaml
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
Loading agents from research_team.yaml...
|
|
[✓] Agents completed their tasks successfully!
|
|
|
|
Results:
|
|
Data Collector: [Collected data from 15 sources...]
|
|
Data Analyzer: [Identified 3 key trends and 5 significant patterns...]
|
|
Report Writer: [Generated comprehensive 25-page report...]
|
|
```
|
|
|
|
### 5. Loading Agents from Markdown
|
|
|
|
#### Create `agents/researcher.md`
|
|
|
|
```markdown
|
|
---
|
|
name: Market Researcher
|
|
description: Expert in market research and competitive analysis
|
|
model_name: gpt-4
|
|
temperature: 0.1
|
|
max_loops: 3
|
|
---
|
|
|
|
You are an expert market researcher with 15+ years of experience in competitive analysis, market sizing, and trend identification. You specialize in technology markets and have deep knowledge of consumer behavior, pricing strategies, and market dynamics.
|
|
|
|
Your approach includes:
|
|
- Systematic data collection from multiple sources
|
|
- Quantitative and qualitative analysis
|
|
- Competitive landscape mapping
|
|
- Market opportunity identification
|
|
- Risk assessment and mitigation strategies
|
|
```
|
|
|
|
#### Create `agents/analyst.md`
|
|
|
|
```markdown
|
|
---
|
|
name: Business Analyst
|
|
description: Strategic business analyst focusing on growth opportunities
|
|
model_name: gpt-4
|
|
temperature: 0.2
|
|
max_loops: 4
|
|
---
|
|
|
|
You are a senior business analyst specializing in strategic planning and growth strategy. You excel at identifying market opportunities, analyzing competitive advantages, and developing actionable business recommendations.
|
|
|
|
Your expertise covers:
|
|
- Market opportunity analysis
|
|
- Competitive positioning
|
|
- Business model innovation
|
|
- Risk assessment
|
|
- Strategic planning frameworks
|
|
```
|
|
|
|
#### Load and Use Agents
|
|
|
|
```bash
|
|
swarms load-markdown --markdown-path ./agents/ --concurrent
|
|
```
|
|
|
|
**Expected Output:**
|
|
```
|
|
Loading agents from markdown: ./agents/
|
|
✓ Successfully loaded 2 agents!
|
|
|
|
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
│ Loaded Agents │
|
|
├─────────────────┬──────────────┬───────────────────────────────────────────┤
|
|
│ Name │ Model │ Description │
|
|
├─────────────────┼──────────────┼───────────────────────────────────────────┤
|
|
│ Market Researcher│ gpt-4 │ Expert in market research and competitive │
|
|
│ │ │ analysis │
|
|
├─────────────────┼──────────────┼───────────────────────────────────────────┤
|
|
│ Business Analyst│ gpt-4 │ Strategic business analyst focusing on │
|
|
│ │ │ growth opportunities │
|
|
└─────────────────┴──────────────┴───────────────────────────────────────────┘
|
|
|
|
Ready to use 2 agents!
|
|
You can now use these agents in your code or run them interactively.
|
|
```
|
|
|
|
## Configuration Examples
|
|
|
|
### 6. YAML Configuration Templates
|
|
|
|
#### Simple Agent Configuration
|
|
|
|
```yaml
|
|
# simple_agent.yaml
|
|
agents:
|
|
- name: "Simple Assistant"
|
|
description: "Basic AI assistant for general tasks"
|
|
model_name: "gpt-3.5-turbo"
|
|
system_prompt: "You are a helpful AI assistant."
|
|
temperature: 0.7
|
|
max_loops: 1
|
|
```
|
|
|
|
#### Advanced Multi-Agent Configuration
|
|
|
|
```yaml
|
|
# advanced_team.yaml
|
|
agents:
|
|
- name: "Project Manager"
|
|
description: "Coordinates team activities and ensures project success"
|
|
model_name: "gpt-4"
|
|
system_prompt: "You are a senior project manager with expertise in agile methodologies, risk management, and team coordination."
|
|
temperature: 0.1
|
|
max_loops: 5
|
|
auto_generate_prompt: true
|
|
dynamic_temperature_enabled: true
|
|
|
|
- name: "Technical Lead"
|
|
description: "Provides technical guidance and architecture decisions"
|
|
model_name: "gpt-4"
|
|
system_prompt: "You are a technical lead with deep expertise in software architecture, system design, and technical decision-making."
|
|
temperature: 0.2
|
|
max_loops: 4
|
|
context_length: 12000
|
|
retry_attempts: 3
|
|
|
|
- name: "Quality Assurance"
|
|
description: "Ensures quality standards and testing coverage"
|
|
model_name: "gpt-4"
|
|
system_prompt: "You are a QA specialist focused on quality assurance, testing strategies, and process improvement."
|
|
temperature: 0.1
|
|
max_loops: 3
|
|
return_step_meta: true
|
|
dashboard: true
|
|
```
|
|
|
|
### 7. Markdown Configuration Templates
|
|
|
|
#### Research Agent Template
|
|
|
|
```markdown
|
|
---
|
|
name: Research Specialist
|
|
description: Academic research and literature review expert
|
|
model_name: gpt-4
|
|
temperature: 0.1
|
|
max_loops: 5
|
|
context_length: 16000
|
|
auto_generate_prompt: true
|
|
---
|
|
|
|
You are a research specialist with expertise in academic research methodologies, literature review, and scholarly writing. You excel at:
|
|
|
|
- Systematic literature reviews
|
|
- Research methodology design
|
|
- Data analysis and interpretation
|
|
- Academic writing and citation
|
|
- Research gap identification
|
|
|
|
Always provide evidence-based responses and cite relevant sources when possible.
|
|
```
|
|
|
|
#### Creative Writing Agent Template
|
|
|
|
```markdown
|
|
---
|
|
name: Creative Writer
|
|
description: Professional creative writer and storyteller
|
|
model_name: gpt-4
|
|
temperature: 0.8
|
|
max_loops: 3
|
|
dynamic_temperature_enabled: true
|
|
output_type: markdown
|
|
---
|
|
|
|
You are a creative writer with a passion for storytelling, character development, and engaging narratives. You specialize in:
|
|
|
|
- Fiction writing across multiple genres
|
|
- Character development and dialogue
|
|
- Plot structure and pacing
|
|
- Creative problem-solving
|
|
- Engaging opening hooks and satisfying conclusions
|
|
|
|
Your writing style is adaptable, engaging, and always focused on creating memorable experiences for readers.
|
|
```
|
|
|
|
## Advanced Usage Examples
|
|
|
|
### 8. Autonomous Swarm Generation
|
|
|
|
#### Simple Task
|
|
```bash
|
|
swarms autoswarm \
|
|
--task "Create a weekly meal plan for a family of 4 with dietary restrictions" \
|
|
--model "gpt-4"
|
|
```
|
|
|
|
#### Complex Research Task
|
|
```bash
|
|
swarms autoswarm \
|
|
--task "Conduct a comprehensive analysis of the impact of artificial intelligence on job markets, including historical trends, current state, and future projections. Include case studies from different industries and recommendations for workforce adaptation." \
|
|
--model "gpt-4"
|
|
```
|
|
|
|
### 9. Integration Examples
|
|
|
|
#### CI/CD Pipeline Integration
|
|
```yaml
|
|
# .github/workflows/swarms-test.yml
|
|
name: Swarms Agent Testing
|
|
on: [push, pull_request]
|
|
|
|
jobs:
|
|
test-agents:
|
|
runs-on: ubuntu-latest
|
|
steps:
|
|
- uses: actions/checkout@v3
|
|
- name: Set up Python
|
|
uses: actions/setup-python@v4
|
|
with:
|
|
python-version: '3.9'
|
|
- name: Install dependencies
|
|
run: |
|
|
pip install swarms
|
|
- name: Run Swarms Agents
|
|
run: |
|
|
swarms run-agents --yaml-file ci_agents.yaml
|
|
env:
|
|
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
|
```
|
|
|
|
#### Shell Script Integration
|
|
```bash
|
|
#!/bin/bash
|
|
# run_daily_analysis.sh
|
|
|
|
echo "Starting daily market analysis..."
|
|
|
|
# Run market research agent
|
|
swarms agent \
|
|
--name "Daily Market Analyzer" \
|
|
--description "Daily market analysis and reporting" \
|
|
--system-prompt "You are a market analyst providing daily market insights." \
|
|
--task "Analyze today's market movements and provide key insights" \
|
|
--model-name "gpt-4" \
|
|
--temperature 0.1
|
|
|
|
# Run risk assessment agent
|
|
swarms agent \
|
|
--name "Risk Assessor" \
|
|
--description "Risk assessment and mitigation specialist" \
|
|
--system-prompt "You are a risk management expert." \
|
|
--task "Assess current market risks and suggest mitigation strategies" \
|
|
--model-name "gpt-4" \
|
|
--temperature 0.2
|
|
|
|
echo "Daily analysis complete!"
|
|
```
|
|
|
|
## Troubleshooting Examples
|
|
|
|
### 10. Common Error Scenarios
|
|
|
|
#### Missing API Key
|
|
```bash
|
|
swarms agent \
|
|
--name "Test Agent" \
|
|
--description "Test" \
|
|
--system-prompt "Test" \
|
|
--task "Test"
|
|
```
|
|
|
|
**Expected Error:**
|
|
```
|
|
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
│ Error │
|
|
├─────────────────────────────────────────────────────────────────────────────┤
|
|
│ Failed to create or run agent: No API key found │
|
|
└─────────────────────────────────────────────────────────────────────────────┘
|
|
|
|
Please check:
|
|
1. Your API keys are set correctly
|
|
2. The model name is valid
|
|
3. All required parameters are provided
|
|
4. Your system prompt is properly formatted
|
|
```
|
|
|
|
**Resolution:**
|
|
```bash
|
|
export OPENAI_API_KEY="your-api-key-here"
|
|
```
|
|
|
|
#### Invalid YAML Configuration
|
|
```bash
|
|
swarms run-agents --yaml-file invalid.yaml
|
|
```
|
|
|
|
**Expected Error:**
|
|
```
|
|
┌─────────────────────────────────────────────────────────────────────────────┘
|
|
│ Configuration Error │
|
|
├─────────────────────────────────────────────────────────────────────────────┤
|
|
│ Error parsing YAML: Invalid YAML syntax │
|
|
└─────────────────────────────────────────────────────────────────────────────┘
|
|
|
|
Please check your agents.yaml file format.
|
|
```
|
|
|
|
#### File Not Found
|
|
```bash
|
|
swarms load-markdown --markdown-path ./nonexistent/
|
|
```
|
|
|
|
**Expected Error:**
|
|
```
|
|
┌─────────────────────────────────────────────────────────────────────────────┐
|
|
│ File Error │
|
|
├─────────────────────────────────────────────────────────────────────────────┤
|
|
│ Markdown file/directory not found: ./nonexistent/ │
|
|
└─────────────────────────────────────────────────────────────────────────────┘
|
|
|
|
Please make sure the path exists and you're in the correct directory.
|
|
```
|
|
|
|
### 11. Debug Mode Usage
|
|
|
|
#### Enable Verbose Output
|
|
```bash
|
|
swarms agent \
|
|
--name "Debug Agent" \
|
|
--description "Agent for debugging" \
|
|
--system-prompt "You are a debugging assistant." \
|
|
--task "Help debug this issue" \
|
|
--model-name "gpt-4" \
|
|
--verbose
|
|
```
|
|
|
|
This will provide detailed output including:
|
|
- Step-by-step execution details
|
|
- API call information
|
|
- Internal state changes
|
|
- Performance metrics
|
|
|
|
## Environment Setup
|
|
|
|
### 12. Environment Verification
|
|
|
|
The `setup-check` command is essential for ensuring your environment is properly configured:
|
|
|
|
```bash
|
|
# Run comprehensive environment check
|
|
swarms setup-check
|
|
```
|
|
|
|
This command checks:
|
|
- Python version compatibility (3.10+)
|
|
- Swarms package version and updates
|
|
- API key configuration
|
|
- Required dependencies
|
|
- Environment file setup
|
|
- Workspace directory configuration
|
|
|
|
**Use Cases:**
|
|
- **Before starting a new project**: Verify all requirements are met
|
|
- **After environment changes**: Confirm configuration updates
|
|
- **Troubleshooting**: Identify missing dependencies or configuration issues
|
|
- **Team onboarding**: Ensure consistent environment setup across team members
|
|
|
|
## Best Practices
|
|
|
|
### 13. Performance Optimization
|
|
|
|
#### Use Concurrent Processing
|
|
```bash
|
|
# For multiple markdown files
|
|
swarms load-markdown \
|
|
--markdown-path ./large_agent_directory/ \
|
|
--concurrent
|
|
```
|
|
|
|
#### Optimize Model Selection
|
|
```bash
|
|
# For simple tasks
|
|
--model-name "gpt-3.5-turbo" --temperature 0.1
|
|
|
|
# For complex reasoning
|
|
--model-name "gpt-4" --temperature 0.1 --max-loops 5
|
|
```
|
|
|
|
#### Context Length Management
|
|
```bash
|
|
# For long documents
|
|
--context-length 16000 --dynamic-context-window
|
|
|
|
# For concise responses
|
|
--context-length 4000 --max-loops 2
|
|
```
|
|
|
|
### 14. Security Considerations
|
|
|
|
#### Environment Variable Usage
|
|
```bash
|
|
# Secure API key management
|
|
export OPENAI_API_KEY="your-secure-key"
|
|
export ANTHROPIC_API_KEY="your-secure-key"
|
|
|
|
# Use in CLI
|
|
swarms agent [options]
|
|
```
|
|
|
|
#### File Permissions
|
|
```bash
|
|
# Secure configuration files
|
|
chmod 600 agents.yaml
|
|
chmod 600 .env
|
|
```
|
|
|
|
## Summary
|
|
|
|
The Swarms CLI provides a powerful and flexible interface for managing AI agents and multi-agent workflows. These examples demonstrate:
|
|
|
|
| Feature | Description |
|
|
|------------------------|---------------------------------------------------------|
|
|
| **Basic Usage** | Getting started with the CLI |
|
|
| **Agent Management** | Creating and configuring custom agents |
|
|
| **Multi-Agent Workflows** | Coordinating multiple agents |
|
|
| **Configuration** | YAML and markdown configuration formats |
|
|
| **Environment Setup** | Environment verification and setup checks |
|
|
| **Advanced Features** | Dynamic configuration and MCP integration |
|
|
| **Troubleshooting** | Common issues and solutions |
|
|
| **Best Practices** | Performance and security considerations |
|
|
|
|
For more information, refer to the [CLI Reference](cli_reference.md) documentation.
|