You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/multi_agent_collab_demo.py

79 lines
2.4 KiB

import os
from swarms import Agent, Anthropic, MultiAgentCollaboration
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
# Initialize the agent
fiancial_analyst = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")),
max_loops="auto",
autosave=True,
# dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
# Initialize the agent
fiancial_director = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt="Your the financial director"
+ FINANCIAL_AGENT_SYS_PROMPT,
llm=Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")),
max_loops="auto",
autosave=True,
# dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = MultiAgentCollaboration(
agents=[fiancial_analyst, fiancial_director],
select_next_speaker="longest_response",
max_loops=10,
)