8.9 KiB
CLI Heavy Swarm Guide: Comprehensive Task Analysis
Run Heavy Swarm from command line for complex task decomposition and comprehensive analysis with specialized agents.
Overview
Heavy Swarm follows a structured workflow:
- Task Decomposition: Breaks down tasks into specialized questions
- Parallel Execution: Executes specialized agents in parallel
- Result Synthesis: Integrates and synthesizes results
- Comprehensive Reporting: Generates detailed final reports
Basic Usage
Step 1: Run a Simple Analysis
swarms heavy-swarm --task "Analyze the current state of quantum computing"
Step 2: Customize with Options
swarms heavy-swarm \
--task "Research renewable energy market trends" \
--loops-per-agent 2 \
--verbose
Step 3: Use Custom Models
swarms heavy-swarm \
--task "Analyze cryptocurrency regulation globally" \
--question-agent-model-name gpt-4 \
--worker-model-name gpt-4 \
--loops-per-agent 3 \
--verbose
Command Options
| Option | Default | Description |
|---|---|---|
--task |
Required | The task to analyze |
--loops-per-agent |
1 | Execution loops per agent |
--question-agent-model-name |
gpt-4o-mini | Model for question generation |
--worker-model-name |
gpt-4o-mini | Model for worker agents |
--random-loops-per-agent |
False | Randomize loops (1-10) |
--verbose |
False | Enable detailed output |
Specialized Agents
Heavy Swarm includes specialized agents for different aspects:
| Agent | Role | Focus |
|---|---|---|
| Question Agent | Decomposes tasks | Generates targeted questions |
| Research Agent | Gathers information | Fast, trustworthy research |
| Analysis Agent | Processes data | Statistical analysis, insights |
| Writing Agent | Creates reports | Clear, structured documentation |
Use Case Examples
Market Research
swarms heavy-swarm \
--task "Comprehensive market analysis of the electric vehicle industry in North America" \
--loops-per-agent 3 \
--question-agent-model-name gpt-4 \
--worker-model-name gpt-4 \
--verbose
Technology Assessment
swarms heavy-swarm \
--task "Evaluate the technical feasibility and ROI of implementing AI-powered customer service automation" \
--loops-per-agent 2 \
--verbose
Competitive Analysis
swarms heavy-swarm \
--task "Analyze competitive landscape for cloud computing services: AWS vs Azure vs Google Cloud" \
--loops-per-agent 2 \
--question-agent-model-name gpt-4 \
--verbose
Investment Research
swarms heavy-swarm \
--task "Research investment opportunities in AI infrastructure companies for 2024-2025" \
--loops-per-agent 3 \
--worker-model-name gpt-4 \
--verbose
Policy Analysis
swarms heavy-swarm \
--task "Analyze the impact of proposed AI regulations on tech startups in the United States" \
--loops-per-agent 2 \
--verbose
Due Diligence
swarms heavy-swarm \
--task "Conduct technology due diligence for acquiring a fintech startup focusing on payment processing" \
--loops-per-agent 3 \
--question-agent-model-name gpt-4 \
--worker-model-name gpt-4 \
--verbose
Workflow Visualization
┌─────────────────────────────────────────────────────────────────┐
│ User Task │
│ "Analyze the impact of AI on healthcare" │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Question Agent │
│ Decomposes task into specialized questions: │
│ - What are current AI applications in healthcare? │
│ - What are the regulatory challenges? │
│ - What is the market size and growth? │
│ - What are the key players and competitors? │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────┬─────────────┬─────────────┬─────────────┐
│ Research │ Analysis │ Research │ Writing │
│ Agent 1 │ Agent │ Agent 2 │ Agent │
└─────────────┴─────────────┴─────────────┴─────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Synthesis & Integration │
│ Combines all agent outputs │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Comprehensive Report │
│ - Executive Summary │
│ - Detailed Findings │
│ - Analysis & Insights │
│ - Recommendations │
└─────────────────────────────────────────────────────────────────┘
Configuration Recommendations
Quick Analysis (Cost-Effective)
swarms heavy-swarm \
--task "Quick overview of [topic]" \
--loops-per-agent 1 \
--question-agent-model-name gpt-4o-mini \
--worker-model-name gpt-4o-mini
Standard Research
swarms heavy-swarm \
--task "Detailed analysis of [topic]" \
--loops-per-agent 2 \
--verbose
Deep Dive (Comprehensive)
swarms heavy-swarm \
--task "Comprehensive research on [topic]" \
--loops-per-agent 3 \
--question-agent-model-name gpt-4 \
--worker-model-name gpt-4 \
--verbose
Exploratory (Variable Depth)
swarms heavy-swarm \
--task "Explore [topic] with varying depth" \
--random-loops-per-agent \
--verbose
Best Practices
!!! tip "Task Formulation" - Be specific about what you want analyzed - Include scope and constraints - Specify desired output format
!!! tip "Loop Configuration"
- Use --loops-per-agent 1 for quick overviews
- Use --loops-per-agent 2-3 for detailed analysis
- Higher loops = more comprehensive but slower
!!! tip "Model Selection"
- Use gpt-4o-mini for cost-effective analysis
- Use gpt-4 for complex, nuanced topics
- Match model to task complexity
!!! warning "Performance Notes"
- Deep analysis (3+ loops) may take several minutes
- Higher loops increase API costs
- Use --verbose to monitor progress
Comparison: LLM Council vs Heavy Swarm
| Feature | LLM Council | Heavy Swarm |
|---|---|---|
| Focus | Collaborative decision-making | Comprehensive task analysis |
| Workflow | Parallel responses + peer review | Task decomposition + parallel research |
| Best For | Questions with multiple viewpoints | Complex research and analysis tasks |
| Output | Synthesized consensus | Detailed research report |
| Speed | Faster | More thorough but slower |
Next Steps
- CLI LLM Council Guide - Collaborative decisions
- CLI Reference - Complete command documentation
- Heavy Swarm Python API - Programmatic usage