You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/features/fail_protocol.md

68 lines
3.0 KiB

# Swarms Multi-Agent Framework Documentation
## Table of Contents
- Agent Failure Protocol
- Swarm Failure Protocol
---
## Agent Failure Protocol
### 1. Overview
Agent failures may arise from bugs, unexpected inputs, or external system changes. This protocol aims to diagnose, address, and prevent such failures.
### 2. Root Cause Analysis
- **Data Collection**: Record the task, inputs, and environmental variables present during the failure.
- **Diagnostic Tests**: Run the agent in a controlled environment replicating the failure scenario.
- **Error Logging**: Analyze error logs to identify patterns or anomalies.
### 3. Solution Brainstorming
- **Code Review**: Examine the code sections linked to the failure for bugs or inefficiencies.
- **External Dependencies**: Check if external systems or data sources have changed.
- **Algorithmic Analysis**: Evaluate if the agent's algorithms were overwhelmed or faced an unhandled scenario.
### 4. Risk Analysis & Solution Ranking
- Assess the potential risks associated with each solution.
- Rank solutions based on:
- Implementation complexity
- Potential negative side effects
- Resource requirements
- Assign a success probability score (0.0 to 1.0) based on the above factors.
### 5. Solution Implementation
- Implement the top 3 solutions sequentially, starting with the highest success probability.
- If all three solutions fail, trigger the "Human-in-the-Loop" protocol.
---
## Swarm Failure Protocol
### 1. Overview
Swarm failures are more complex, often resulting from inter-agent conflicts, systemic bugs, or large-scale environmental changes. This protocol delves deep into such failures to ensure the swarm operates optimally.
### 2. Root Cause Analysis
- **Inter-Agent Analysis**: Examine if agents were in conflict or if there was a breakdown in collaboration.
- **System Health Checks**: Ensure all system components supporting the swarm are operational.
- **Environment Analysis**: Investigate if external factors or systems impacted the swarm's operation.
### 3. Solution Brainstorming
- **Collaboration Protocols**: Review and refine how agents collaborate.
- **Resource Allocation**: Check if the swarm had adequate computational and memory resources.
- **Feedback Loops**: Ensure agents are effectively learning from each other.
### 4. Risk Analysis & Solution Ranking
- Assess the potential systemic risks posed by each solution.
- Rank solutions considering:
- Scalability implications
- Impact on individual agents
- Overall swarm performance potential
- Assign a success probability score (0.0 to 1.0) based on the above considerations.
### 5. Solution Implementation
- Implement the top 3 solutions sequentially, prioritizing the one with the highest success probability.
- If all three solutions are unsuccessful, invoke the "Human-in-the-Loop" protocol for expert intervention.
---
By following these protocols, the Swarms Multi-Agent Framework can systematically address and prevent failures, ensuring a high degree of reliability and efficiency.