ClusterOps API Reference
ClusterOps is a Python library for managing and executing tasks across CPU and GPU resources in a distributed computing environment. It provides functions for resource discovery, task execution, and performance monitoring.
Installation
$ pip3 install clusterops
Table of Contents
- CPU Operations
- GPU Operations
- Utility Functions
- Resource Monitoring
CPU Operations
list_available_cpus()
Lists all available CPU cores.
Returns
Type |
Description |
List[int] |
A list of available CPU core indices. |
Raises
Exception |
Description |
RuntimeError |
If no CPUs are found. |
Example
from clusterops import list_available_cpus
available_cpus = list_available_cpus()
print(f"Available CPU cores: {available_cpus}")
execute_on_cpu(cpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any
Executes a callable on a specific CPU.
Parameters
Name |
Type |
Description |
cpu_id |
int |
The CPU core to run the function on. |
func |
Callable |
The function to be executed. |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
Any |
The result of the function execution. |
Raises
Exception |
Description |
ValueError |
If the CPU core specified is invalid. |
RuntimeError |
If there is an error executing the function on the CPU. |
Example
from clusterops import execute_on_cpu
def sample_task(n: int) -> int:
return n * n
result = execute_on_cpu(0, sample_task, 10)
print(f"Result of sample task on CPU 0: {result}")
execute_with_cpu_cores(core_count: int, func: Callable, *args: Any, **kwargs: Any) -> Any
Executes a callable using a specified number of CPU cores.
Parameters
Name |
Type |
Description |
core_count |
int |
The number of CPU cores to run the function on. |
func |
Callable |
The function to be executed. |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
Any |
The result of the function execution. |
Raises
Exception |
Description |
ValueError |
If the number of CPU cores specified is invalid or exceeds available cores. |
RuntimeError |
If there is an error executing the function on the specified CPU cores. |
Example
from clusterops import execute_with_cpu_cores
def parallel_task(n: int) -> int:
return sum(range(n))
result = execute_with_cpu_cores(4, parallel_task, 1000000)
print(f"Result of parallel task using 4 CPU cores: {result}")
GPU Operations
list_available_gpus() -> List[str]
Lists all available GPUs.
Returns
Type |
Description |
List[str] |
A list of available GPU names. |
Raises
Exception |
Description |
RuntimeError |
If no GPUs are found. |
Example
from clusterops import list_available_gpus
available_gpus = list_available_gpus()
print(f"Available GPUs: {available_gpus}")
select_best_gpu() -> Optional[int]
Selects the GPU with the most free memory.
Returns
Type |
Description |
Optional[int] |
The GPU ID of the best available GPU, or None if no GPUs are available. |
Example
from clusterops import select_best_gpu
best_gpu = select_best_gpu()
if best_gpu is not None:
print(f"Best GPU for execution: GPU {best_gpu}")
else:
print("No GPUs available")
execute_on_gpu(gpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any
Executes a callable on a specific GPU using Ray.
Parameters
Name |
Type |
Description |
gpu_id |
int |
The GPU to run the function on. |
func |
Callable |
The function to be executed. |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
Any |
The result of the function execution. |
Raises
Exception |
Description |
ValueError |
If the GPU index is invalid. |
RuntimeError |
If there is an error executing the function on the GPU. |
Example
from clusterops import execute_on_gpu
def gpu_task(n: int) -> int:
return n ** 2
result = execute_on_gpu(0, gpu_task, 10)
print(f"Result of GPU task on GPU 0: {result}")
execute_on_multiple_gpus(gpu_ids: List[int], func: Callable, all_gpus: bool = False, timeout: float = None, *args: Any, **kwargs: Any) -> List[Any]
Executes a callable across multiple GPUs using Ray.
Parameters
Name |
Type |
Description |
gpu_ids |
List[int] |
The list of GPU IDs to run the function on. |
func |
Callable |
The function to be executed. |
all_gpus |
bool |
Whether to use all available GPUs (default: False). |
timeout |
float |
Timeout for the execution in seconds (default: None). |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
List[Any] |
A list of results from the execution on each GPU. |
Raises
Exception |
Description |
ValueError |
If any GPU index is invalid. |
RuntimeError |
If there is an error executing the function on the GPUs. |
Example
from clusterops import execute_on_multiple_gpus
def multi_gpu_task(n: int) -> int:
return n ** 3
results = execute_on_multiple_gpus([0, 1], multi_gpu_task, 5)
print(f"Results of multi-GPU task: {results}")
distributed_execute_on_gpus(gpu_ids: List[int], func: Callable, *args: Any, **kwargs: Any) -> List[Any]
Executes a callable across multiple GPUs and nodes using Ray's distributed task scheduling.
Parameters
Name |
Type |
Description |
gpu_ids |
List[int] |
The list of GPU IDs across nodes to run the function on. |
func |
Callable |
The function to be executed. |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
List[Any] |
A list of results from the execution on each GPU. |
Example
from clusterops import distributed_execute_on_gpus
def distributed_task(n: int) -> int:
return n ** 4
results = distributed_execute_on_gpus([0, 1, 2, 3], distributed_task, 3)
print(f"Results of distributed GPU task: {results}")
Utility Functions
retry_with_backoff(func: Callable, retries: int = RETRY_COUNT, delay: float = RETRY_DELAY, *args: Any, **kwargs: Any) -> Any
Retries a callable function with exponential backoff in case of failure.
Parameters
Name |
Type |
Description |
func |
Callable |
The function to execute with retries. |
retries |
int |
Number of retries (default: RETRY_COUNT from env). |
delay |
float |
Delay between retries in seconds (default: RETRY_DELAY from env). |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
Any |
The result of the function execution. |
Raises
Exception |
Description |
Exception |
After all retries fail. |
Example
from clusterops import retry_with_backoff
def unstable_task():
# Simulating an unstable task that might fail
import random
if random.random() < 0.5:
raise Exception("Task failed")
return "Task succeeded"
result = retry_with_backoff(unstable_task, retries=5, delay=1)
print(f"Result of unstable task: {result}")
Resource Monitoring
monitor_resources()
Continuously monitors CPU and GPU resources and logs alerts when thresholds are crossed.
Example
from clusterops import monitor_resources
# Start monitoring resources
monitor_resources()
profile_execution(func: Callable, *args: Any, **kwargs: Any) -> Any
Profiles the execution of a task, collecting metrics like execution time and CPU/GPU usage.
Parameters
Name |
Type |
Description |
func |
Callable |
The function to profile. |
*args |
Any |
Arguments for the callable. |
**kwargs |
Any |
Keyword arguments for the callable. |
Returns
Type |
Description |
Any |
The result of the function execution along with the collected metrics. |
Example
from clusterops import profile_execution
def cpu_intensive_task():
return sum(i*i for i in range(10000000))
result = profile_execution(cpu_intensive_task)
print(f"Result of profiled task: {result}")
This API reference provides a comprehensive overview of the ClusterOps library's main functions, their parameters, return values, and usage examples. It should help users understand and utilize the library effectively for managing and executing tasks across CPU and GPU resources in a distributed computing environment.