14 KiB
Medical Coder Swarm API Documentation
Base URL: https://mcs-285321057562.us-central1.run.app
Table of Contents
Authentication
Authentication details will be provided by the MCS team. Contact support for API credentials.
Rate Limits
Endpoint | GET Rate Limit Status |
---|---|
GET /rate-limits |
Returns current rate limit status for your IP address |
Endpoints
Health Check
Check if the API is operational.
Method | Endpoint | Description |
---|---|---|
GET |
/health |
Returns 200 OK if service is running |
Run Medical Coder
Process a single patient case through the Medical Coder Swarm.
Method | Endpoint | Description |
---|---|---|
POST |
/v1/medical-coder/run |
Process a single patient case |
Request Body Parameters:
Parameter | Type | Required | Description |
---|---|---|---|
patient_id | string | Yes | Unique identifier for the patient |
case_description | string | Yes | Medical case details to be processed |
Response Schema:
Field | Type | Description |
---|---|---|
patient_id | string | Patient identifier |
case_data | string | Processed case data |
Run Batch Medical Coder
Process multiple patient cases in a single request.
Method | Endpoint | Description |
---|---|---|
POST |
/v1/medical-coder/run-batch |
Process multiple patient cases |
Request Body Parameters:
Parameter | Type | Required | Description |
---|---|---|---|
cases | array | Yes | Array of PatientCase objects |
Get Patient Data
Retrieve data for a specific patient.
Method | Endpoint | Description |
---|---|---|
GET |
/v1/medical-coder/patient/{patient_id} |
Get patient data by ID |
Path Parameters:
Parameter | Type | Required | Description |
---|---|---|---|
patient_id | string | Yes | Patient identifier |
Get All Patients
Retrieve data for all patients.
Method | Endpoint | Description |
---|---|---|
GET |
/v1/medical-coder/patients |
Get all patient data |
Code Examples
Python
import requests
import json
class MCSClient:
def __init__(self, base_url="https://mcs.swarms.ai", api_key=None):
self.base_url = base_url
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}" if api_key else None
}
def run_medical_coder(self, patient_id, case_description):
endpoint = f"{self.base_url}/v1/medical-coder/run"
payload = {
"patient_id": patient_id,
"case_description": case_description
}
response = requests.post(endpoint, json=payload, headers=self.headers)
return response.json()
def run_batch(self, cases):
endpoint = f"{self.base_url}/v1/medical-coder/run-batch"
payload = {"cases": cases}
response = requests.post(endpoint, json=payload, headers=self.headers)
return response.json()
# Usage example
client = MCSClient(api_key="your_api_key")
result = client.run_medical_coder("P123", "Patient presents with...")
Next.js (TypeScript)
// types.ts
interface PatientCase {
patient_id: string;
case_description: string;
}
interface QueryResponse {
patient_id: string;
case_data: string;
}
// api.ts
export class MCSApi {
private baseUrl: string;
private apiKey: string;
constructor(apiKey: string, baseUrl = 'https://mcs.swarms.ai') {
this.baseUrl = baseUrl;
this.apiKey = apiKey;
}
private async fetchWithAuth(endpoint: string, options: RequestInit = {}) {
const response = await fetch(`${this.baseUrl}${endpoint}`, {
...options,
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${this.apiKey}`,
...options.headers,
},
});
return response.json();
}
async runMedicalCoder(patientCase: PatientCase): Promise<QueryResponse> {
return this.fetchWithAuth('/v1/medical-coder/run', {
method: 'POST',
body: JSON.stringify(patientCase),
});
}
async getPatientData(patientId: string): Promise<QueryResponse> {
return this.fetchWithAuth(`/v1/medical-coder/patient/${patientId}`);
}
}
// Usage in component
const mcsApi = new MCSApi(process.env.MCS_API_KEY);
export async function ProcessPatientCase({ patientId, caseDescription }) {
const result = await mcsApi.runMedicalCoder({
patient_id: patientId,
case_description: caseDescription,
});
return result;
}
Go
package mcs
import (
"bytes"
"encoding/json"
"fmt"
"net/http"
)
type MCSClient struct {
BaseURL string
APIKey string
Client *http.Client
}
type PatientCase struct {
PatientID string `json:"patient_id"`
CaseDescription string `json:"case_description"`
}
type QueryResponse struct {
PatientID string `json:"patient_id"`
CaseData string `json:"case_data"`
}
func NewMCSClient(apiKey string) *MCSClient {
return &MCSClient{
BaseURL: "https://mcs.swarms.ai",
APIKey: apiKey,
Client: &http.Client{},
}
}
func (c *MCSClient) RunMedicalCoder(patientCase PatientCase) (*QueryResponse, error) {
payload, err := json.Marshal(patientCase)
if err != nil {
return nil, err
}
req, err := http.NewRequest("POST",
fmt.Sprintf("%s/v1/medical-coder/run", c.BaseURL),
bytes.NewBuffer(payload))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", fmt.Sprintf("Bearer %s", c.APIKey))
resp, err := c.Client.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
var result QueryResponse
if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
return nil, err
}
return &result, nil
}
// Usage example
func main() {
client := NewMCSClient("your_api_key")
result, err := client.RunMedicalCoder(PatientCase{
PatientID: "P123",
CaseDescription: "Patient presents with...",
})
if err != nil {
panic(err)
}
fmt.Printf("Result: %+v\n", result)
}
Error Handling
The API uses standard HTTP status codes and returns detailed error messages in JSON format.
Common Status Codes:
Status Code | Description |
---|---|
200 | Success |
400 | Bad Request - Invalid input |
401 | Unauthorized - Invalid or missing API key |
422 | Validation Error - Request validation failed |
429 | Too Many Requests - Rate limit exceeded |
500 | Internal Server Error |
Error Response Format:
{
"detail": [
{
"loc": ["body", "patient_id"],
"msg": "field required",
"type": "value_error.missing"
}
]
}
MCS Python Client Documentation
Installation
pip install mcs
Quick Start
from mcs import MCSClient, PatientCase
# Using context manager (recommended)
with MCSClient() as client:
# Process a single case
response = client.run_medical_coder(
patient_id="P123",
case_description="Patient presents with acute respiratory symptoms..."
)
print(f"Processed case: {response.case_data}")
# Process multiple cases
cases = [
PatientCase("P124", "Case 1 description..."),
PatientCase("P125", "Case 2 description...")
]
batch_response = client.run_batch(cases)
Client Configuration
Constructor Arguments
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
api_key | str | Yes | - | Authentication API key |
base_url | str | No | "https://mcs.swarms.ai" | API base URL |
timeout | int | No | 30 | Request timeout in seconds |
max_retries | int | No | 3 | Maximum retry attempts |
logger_name | str | No | "mcs" | Name for the logger instance |
Example Configuration
client = MCSClient(
,
base_url="https://custom-url.example.com",
timeout=45,
max_retries=5,
logger_name="custom_logger"
)
Data Models
PatientCase
Field | Type | Required | Description |
---|---|---|---|
patient_id | str | Yes | Unique identifier for the patient |
case_description | str | Yes | Medical case details |
QueryResponse
Field | Type | Description |
---|---|---|
patient_id | str | Patient identifier |
case_data | str | Processed case data |
Methods
run_medical_coder
Process a single patient case.
def run_medical_coder(
self,
patient_id: str,
case_description: str
) -> QueryResponse:
Arguments:
Parameter | Type | Required | Description |
---|---|---|---|
patient_id | str | Yes | Patient identifier |
case_description | str | Yes | Case details |
Example:
response = client.run_medical_coder(
patient_id="P123",
case_description="Patient presents with..."
)
print(response.case_data)
run_batch
Process multiple patient cases in batch.
def run_batch(
self,
cases: List[PatientCase]
) -> List[QueryResponse]:
Arguments:
Parameter | Type | Required | Description |
---|---|---|---|
cases | List[PatientCase] | Yes | List of patient cases |
Example:
cases = [
PatientCase("P124", "Case 1 description..."),
PatientCase("P125", "Case 2 description...")
]
responses = client.run_batch(cases)
for response in responses:
print(f"Patient {response.patient_id}: {response.case_data}")
get_patient_data
Retrieve data for a specific patient.
def get_patient_data(
self,
patient_id: str
) -> QueryResponse:
Example:
patient_data = client.get_patient_data("P123")
print(f"Patient data: {patient_data.case_data}")
get_all_patients
Retrieve data for all patients.
def get_all_patients(self) -> List[QueryResponse]:
Example:
all_patients = client.get_all_patients()
for patient in all_patients:
print(f"Patient {patient.patient_id}: {patient.case_data}")
get_rate_limits
Get current rate limit status.
def get_rate_limits(self) -> Dict[str, Any]:
Example:
rate_limits = client.get_rate_limits()
print(f"Rate limit status: {rate_limits}")
health_check
Check if the API is operational.
def health_check(self) -> bool:
Example:
is_healthy = client.health_check()
print(f"API health: {'Healthy' if is_healthy else 'Unhealthy'}")
Error Handling
Exception Hierarchy
Exception | Description |
---|---|
MCSClientError | Base exception for all client errors |
RateLimitError | Raised when API rate limit is exceeded |
AuthenticationError | Raised when API authentication fails |
ValidationError | Raised when request validation fails |
Example Error Handling
from mcs import MCSClient, MCSClientError, RateLimitError
with MCSClient() as client:
try:
response = client.run_medical_coder("P123", "Case description...")
except RateLimitError:
print("Rate limit exceeded. Please wait before retrying.")
except MCSClientError as e:
print(f"An error occurred: {str(e)}")
Advanced Usage
Retry Configuration
The client implements two levels of retry logic:
- Connection-level retries (using
HTTPAdapter
):
client = MCSClient(
,
max_retries=5 # Adjusts connection-level retries
)
- Application-level retries (using
tenacity
):
from tenacity import retry, stop_after_attempt
@retry(stop=stop_after_attempt(5))
def process_with_custom_retries():
with MCSClient() as client:
return client.run_medical_coder("P123", "Case description...")
Batch Processing with Progress Tracking
from tqdm import tqdm
with MCSClient() as client:
cases = [
PatientCase(f"P{i}", f"Case description {i}")
for i in range(100)
]
# Process in smaller batches
batch_size = 10
results = []
for i in tqdm(range(0, len(cases), batch_size)):
batch = cases[i:i + batch_size]
batch_results = client.run_batch(batch)
results.extend(batch_results)
Best Practices
-
Always use context managers:
with MCSClient() as client: # Your code here pass
-
Handle rate limits appropriately:
from time import sleep def process_with_rate_limit_handling(): with MCSClient() as client: try: return client.run_medical_coder("P123", "Case...") except RateLimitError: sleep(60) # Wait before retry return client.run_medical_coder("P123", "Case...")
-
Implement proper logging:
from loguru import logger logger.add("mcs.log", rotation="500 MB") with MCSClient() as client: try: response = client.run_medical_coder("P123", "Case...") except Exception as e: logger.exception(f"Error processing case: {str(e)}")
-
Monitor API health:
def ensure_healthy_api(): with MCSClient() as client: if not client.health_check(): raise SystemExit("API is not healthy")