You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/swarms/structs/conversation.md

8.2 KiB

Module/Class Name: Conversation

Introduction

The Conversation class is a powerful tool for managing and structuring conversation data in a Python program. It enables you to create, manipulate, and analyze conversations easily. This documentation will provide you with a comprehensive understanding of the Conversation class, its attributes, methods, and how to effectively use it.

Table of Contents

  1. Class Definition
  • Overview

  • Attributes

  • Initialization Parameters

  1. Core Methods
  • Message Management

  • History Operations

  • Export/Import

  • Search and Query

  • Cache Management

  • Memory Management

  1. Advanced Features
  • Token Counting

  • Memory Providers

  • Caching System

  • Batch Operations


1. Class Definition

Overview

The Conversation class is designed to manage conversations by keeping track of messages and their attributes. It offers methods for adding, deleting, updating, querying, and displaying messages within the conversation. Additionally, it supports exporting and importing conversations, searching for specific keywords, and more.

Attributes

  • id (str): Unique identifier for the conversation

  • name (str): Name of the conversation

  • system_prompt (Optional[str]): System prompt for the conversation

  • time_enabled (bool): Flag to enable time tracking for messages

  • autosave (bool): Flag to enable automatic saving

  • save_filepath (str): File path for saving conversation history

  • conversation_history (list): List storing conversation messages

  • tokenizer (Any): Tokenizer for counting tokens

  • context_length (int): Maximum number of tokens allowed

  • rules (str): Rules for the conversation

  • custom_rules_prompt (str): Custom prompt for rules

  • user (str): User identifier for messages

  • auto_save (bool): Flag for auto-saving

  • save_as_yaml (bool): Flag to save as YAML

  • save_as_json_bool (bool): Flag to save as JSON

  • token_count (bool): Flag to enable token counting

  • cache_enabled (bool): Flag to enable prompt caching

  • cache_stats (dict): Statistics about cache usage

  • provider (Literal["mem0", "in-memory"]): Memory provider type

Initialization Parameters

conversation = Conversation(
    id="unique_id",                    # Optional: Unique identifier
    name="conversation_name",          # Optional: Name of conversation
    system_prompt="System message",    # Optional: Initial system prompt
    time_enabled=True,                 # Optional: Enable timestamps
    autosave=True,                     # Optional: Enable auto-saving
    save_filepath="path/to/save.json", # Optional: Save location
    tokenizer=your_tokenizer,          # Optional: Token counter
    context_length=8192,               # Optional: Max tokens
    rules="conversation rules",        # Optional: Rules
    custom_rules_prompt="custom",      # Optional: Custom rules
    user="User:",                      # Optional: User identifier
    auto_save=True,                    # Optional: Auto-save
    save_as_yaml=True,                 # Optional: Save as YAML
    save_as_json_bool=False,           # Optional: Save as JSON
    token_count=True,                  # Optional: Count tokens
    cache_enabled=True,                # Optional: Enable caching
    conversations_dir="path/to/dir",   # Optional: Cache directory
    provider="in-memory"               # Optional: Memory provider
)

2. Core Methods

Message Management

add(role: str, content: Union[str, dict, list], metadata: Optional[dict] = None)

Adds a message to the conversation history.

# Add a simple text message
conversation.add("user", "Hello, how are you?")

# Add a structured message
conversation.add("assistant", {
    "type": "response",
    "content": "I'm doing well!"
})

# Add with metadata
conversation.add("user", "Hello", metadata={"timestamp": "2024-03-20"})
add_multiple_messages(roles: List[str], contents: List[Union[str, dict, list]])

Adds multiple messages at once.

conversation.add_multiple_messages(
    roles=["user", "assistant"],
    contents=["Hello!", "Hi there!"]
)
add_tool_output_to_agent(role: str, tool_output: dict)

Adds a tool output to the conversation.

conversation.add_tool_output_to_agent(
    "tool",
    {"name": "calculator", "result": "42"}
)

History Operations

get_last_message_as_string() -> str

Returns the last message as a string.

last_message = conversation.get_last_message_as_string()
# Returns: "assistant: Hello there!"
get_final_message() -> str

Returns the final message from the conversation.

final_message = conversation.get_final_message()
# Returns: "assistant: Goodbye!"
get_final_message_content() -> str

Returns just the content of the final message.

final_content = conversation.get_final_message_content()
# Returns: "Goodbye!"
return_all_except_first() -> list

Returns all messages except the first one.

messages = conversation.return_all_except_first()
return_all_except_first_string() -> str

Returns all messages except the first one as a string.

messages_str = conversation.return_all_except_first_string()

Export/Import

to_json() -> str

Converts conversation to JSON string.

json_str = conversation.to_json()
to_dict() -> list

Converts conversation to dictionary.

dict_data = conversation.to_dict()
to_yaml() -> str

Converts conversation to YAML string.

yaml_str = conversation.to_yaml()
return_json() -> str

Returns conversation as formatted JSON string.

json_str = conversation.return_json()

Search and Query

get_visible_messages(agent: "Agent", turn: int) -> List[Dict]

Gets visible messages for a specific agent and turn.

visible_msgs = conversation.get_visible_messages(agent, turn=1)

Cache Management

get_cache_stats() -> Dict[str, int]

Gets statistics about cache usage.

stats = conversation.get_cache_stats()
# Returns: {
#     "hits": 10,
#     "misses": 5,
#     "cached_tokens": 1000,
#     "total_tokens": 2000,
#     "hit_rate": 0.67
# }

Memory Management

clear_memory()

Clears the conversation memory.

conversation.clear_memory()
clear()

Clears the conversation history.

conversation.clear()

3. Advanced Features

Token Counting

The class supports automatic token counting when enabled:

conversation = Conversation(token_count=True)
conversation.add("user", "Hello world")
# Token count will be automatically calculated and stored

Memory Providers

The class supports different memory providers:

# In-memory provider (default)
conversation = Conversation(provider="in-memory")

# Mem0 provider
conversation = Conversation(provider="mem0")

Caching System

The caching system can be enabled to improve performance:

conversation = Conversation(cache_enabled=True)
# Messages will be cached for faster retrieval

Batch Operations

The class supports batch operations for efficiency:

# Batch add messages
conversation.batch_add([
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"}
])

Class Methods

load_conversation(name: str, conversations_dir: Optional[str] = None) -> "Conversation"

Loads a conversation from cache.

conversation = Conversation.load_conversation("my_conversation")

list_cached_conversations(conversations_dir: Optional[str] = None) -> List[str]

Lists all cached conversations.

conversations = Conversation.list_cached_conversations()

Conclusion

The Conversation class provides a comprehensive set of tools for managing conversations in Python applications. With support for multiple memory providers, caching, token counting, and various export formats, it's suitable for a wide range of use cases from simple chat applications to complex AI systems.

For more information or specific use cases, please refer to the examples above or consult the source code.