You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/swarms/index.md

8.7 KiB

Swarms

Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.

Vision

At Swarms, we're transforming the landscape of AI from siloed AI agents to a unified 'swarm' of intelligence. Through relentless iteration and the power of collective insight from our 1500+ Agora researchers, we're developing a groundbreaking framework for AI collaboration. Our mission is to catalyze a paradigm shift, advancing Humanity with the power of unified autonomous AI agent swarms.


🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Kye, the Creator, to discuss any issues, provide feedback, or explore how we can improve Swarms for you.


Installation

pip3 install --upgrade swarms


Usage

We have a small gallery of examples to run here, for more check out the docs to build your own agent and or swarms!

Agent Example

  • Reliable Structure that provides LLMS autonomy
  • Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more
  • Enterprise Grade + Production Grade: Agent is designed and optimized for automating real-world tasks at scale!
from swarms.models import OpenAIChat
from swarms.structs import Agent

api_key = ""

# Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
llm = OpenAIChat(
    # model_name="gpt-4"
    openai_api_key=api_key,
    temperature=0.5,
    # max_tokens=100,
)

## Initialize the workflow
agent = Agent(
    llm=llm,
    max_loops=2,
    dashboard=True,
    # stopping_condition=None,  # You can define a stopping condition as needed.
    # loop_interval=1,
    # retry_attempts=3,
    # retry_interval=1,
    # interactive=False,  # Set to 'True' for interactive mode.
    # dynamic_temperature=False,  # Set to 'True' for dynamic temperature handling.
)

# Load the agent with a task
out = agent.run("Generate a 10,000 word blog on health and wellness.")
# print(out)

SequentialWorkflow

  • A Sequential swarm of autonomous agents where each agent's outputs are fed into the next agent
  • Save and Restore Workflow states!
  • Integrate Agent's with various LLMs and Multi-Modality Models
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow

# Example usage
api_key = ""  # Your actual API key here

# Initialize the language agent
llm = OpenAIChat(
    openai_api_key=api_key,
    temperature=0.5,
    max_tokens=3000,
)

# Initialize the Agent with the language agent
agent1 = Agent(llm=llm, max_loops=1, dashboard=False)

# Create another Agent for a different task
agent2 = Agent(llm=llm, max_loops=1, dashboard=False)

agent3 = Agent(llm=llm, max_loops=1, dashboard=False)

# Create the workflow
workflow = SequentialWorkflow(max_loops=1)

# Add tasks to the workflow
workflow.add("Generate a 10,000 word blog on health and wellness.", agent1)

# Suppose the next task takes the output of the first task as input
workflow.add("Summarize the generated blog", agent2)

workflow.add("Create a references sheet of materials for the curriculm", agent3)

# Run the workflow
workflow.run()

# Output the results
for task in workflow.tasks:
    print(f"Task: {task.description}, Result: {task.result}")

Features 🤖

The Swarms framework is designed with a strong emphasis on reliability, performance, and production-grade readiness. Below are the key features that make Swarms an ideal choice for enterprise-level AI deployments.

🚀 Production-Grade Readiness

  • Scalable Architecture: Built to scale effortlessly with your growing business needs.
  • Enterprise-Level Security: Incorporates top-notch security features to safeguard your data and operations.
  • Containerization and Microservices: Easily deployable in containerized environments, supporting microservices architecture.

⚙️ Reliability and Robustness

  • Fault Tolerance: Designed to handle failures gracefully, ensuring uninterrupted operations.
  • Consistent Performance: Maintains high performance even under heavy loads or complex computational demands.
  • Automated Backup and Recovery: Features automatic backup and recovery processes, reducing the risk of data loss.

💡 Advanced AI Capabilities

The Swarms framework is equipped with a suite of advanced AI capabilities designed to cater to a wide range of applications and scenarios, ensuring versatility and cutting-edge performance.

Multi-Modal Autonomous Agents

  • Versatile Model Support: Seamlessly works with various AI models, including NLP, computer vision, and more, for comprehensive multi-modal capabilities.
  • Context-Aware Processing: Employs context-aware processing techniques to ensure relevant and accurate responses from agents.

Function Calling Models for API Execution

  • Automated API Interactions: Function calling models that can autonomously execute API calls, enabling seamless integration with external services and data sources.
  • Dynamic Response Handling: Capable of processing and adapting to responses from APIs for real-time decision making.

Varied Architectures of Swarms

  • Flexible Configuration: Supports multiple swarm architectures, from centralized to decentralized, for diverse application needs.
  • Customizable Agent Roles: Allows customization of agent roles and behaviors within the swarm to optimize performance and efficiency.

Generative Models

  • Advanced Generative Capabilities: Incorporates state-of-the-art generative models to create content, simulate scenarios, or predict outcomes.
  • Creative Problem Solving: Utilizes generative AI for innovative problem-solving approaches and idea generation.

Enhanced Decision-Making

  • AI-Powered Decision Algorithms: Employs advanced algorithms for swift and effective decision-making in complex scenarios.
  • Risk Assessment and Management: Capable of assessing risks and managing uncertain situations with AI-driven insights.

Real-Time Adaptation and Learning

  • Continuous Learning: Agents can continuously learn and adapt from new data, improving their performance and accuracy over time.
  • Environment Adaptability: Designed to adapt to different operational environments, enhancing robustness and reliability.

🔄 Efficient Workflow Automation

  • Streamlined Task Management: Simplifies complex tasks with automated workflows, reducing manual intervention.
  • Customizable Workflows: Offers customizable workflow options to fit specific business needs and requirements.
  • Real-Time Analytics and Reporting: Provides real-time insights into agent performance and system health.

🌐 Wide-Ranging Integration

  • API-First Design: Easily integrates with existing systems and third-party applications via robust APIs.
  • Cloud Compatibility: Fully compatible with major cloud platforms for flexible deployment options.
  • Continuous Integration/Continuous Deployment (CI/CD): Supports CI/CD practices for seamless updates and deployment.

📊 Performance Optimization

  • Resource Management: Efficiently manages computational resources for optimal performance.
  • Load Balancing: Automatically balances workloads to maintain system stability and responsiveness.
  • Performance Monitoring Tools: Includes comprehensive monitoring tools for tracking and optimizing performance.

🛡️ Security and Compliance

  • Data Encryption: Implements end-to-end encryption for data at rest and in transit.
  • Compliance Standards Adherence: Adheres to major compliance standards ensuring legal and ethical usage.
  • Regular Security Updates: Regular updates to address emerging security threats and vulnerabilities.

💬 Community and Support

  • Extensive Documentation: Detailed documentation for easy implementation and troubleshooting.
  • Active Developer Community: A vibrant community for sharing ideas, solutions, and best practices.
  • Professional Support: Access to professional support for enterprise-level assistance and guidance.

Swarms framework is not just a tool but a robust, scalable, and secure partner in your AI journey, ready to tackle the challenges of modern AI applications in a business environment.

Documentation

Contribute

Community

License

MIT