19 KiB
ConcurrentWorkflow Documentation
The ConcurrentWorkflow
class is designed to facilitate the concurrent execution of multiple agents, each tasked with solving a specific query or problem. This class is particularly useful in scenarios where multiple agents need to work in parallel, allowing for efficient resource utilization and faster completion of tasks. The workflow manages the execution, handles streaming callbacks, and provides optional dashboard monitoring for real-time progress tracking.
Full Path: swarms.structs.concurrent_workflow
Key Features
Feature | Description |
---|---|
Concurrent Execution | Runs multiple agents simultaneously using Python's ThreadPoolExecutor |
Dashboard Monitoring | Optional real-time dashboard for tracking agent status and progress |
Streaming Support | Full support for streaming callbacks during agent execution |
Error Handling | Comprehensive error handling with logging and status tracking |
Batch Processing | Supports running multiple tasks sequentially |
Resource Management | Automatic cleanup of resources and connections |
Flexible Output Types | Multiple output format options for conversation history |
Agent Status Tracking | Real-time tracking of agent execution states (pending, running, completed, error) |
Class Definition
Attributes
Attribute | Type | Description |
---|---|---|
name |
str |
The name of the workflow. Defaults to "ConcurrentWorkflow" . |
description |
str |
A brief description of the workflow. |
agents |
List[Agent] |
A list of agents to be executed concurrently. |
metadata_output_path |
str |
Path to save the metadata output. Defaults to "agent_metadata.json" . |
auto_save |
bool |
Flag indicating whether to automatically save the metadata. |
output_type |
str |
The type of output format. Defaults to "dict" . |
max_loops |
int |
Maximum number of loops for each agent. Defaults to 1 . |
return_str_on |
bool |
Flag to return output as string. Defaults to False . |
auto_generate_prompts |
bool |
Flag indicating whether to auto-generate prompts for agents. |
return_entire_history |
bool |
Flag to return entire conversation history. Defaults to False . |
interactive |
bool |
Flag indicating whether to enable interactive mode. Defaults to False . |
cache_size |
int |
The size of the cache. Defaults to 100 . |
max_retries |
int |
The maximum number of retry attempts. Defaults to 3 . |
retry_delay |
float |
The delay between retry attempts in seconds. Defaults to 1.0 . |
show_progress |
bool |
Flag indicating whether to show progress. Defaults to False . |
_cache |
dict |
The cache for storing agent outputs. |
_progress_bar |
tqdm |
The progress bar for tracking execution. |
Constructor
ConcurrentWorkflow.__init__
Initializes the ConcurrentWorkflow
class with the provided parameters.
Parameters
Parameter | Type | Default Value | Description |
---|---|---|---|
id |
str |
swarm_id() |
Unique identifier for the workflow instance. |
name |
str |
"ConcurrentWorkflow" |
The name of the workflow. |
description |
str |
"Execution of multiple agents concurrently" |
A brief description of the workflow. |
agents |
List[Union[Agent, Callable]] |
None |
A list of agents or callables to be executed concurrently. |
auto_save |
bool |
True |
Flag indicating whether to automatically save metadata. |
output_type |
str |
"dict-all-except-first" |
The type of output format. |
max_loops |
int |
1 |
Maximum number of loops for each agent. |
auto_generate_prompts |
bool |
False |
Flag indicating whether to auto-generate prompts for agents. |
show_dashboard |
bool |
False |
Flag indicating whether to show real-time dashboard. |
Raises
ValueError
: If no agents are provided or if the agents list is empty.
Methods
ConcurrentWorkflow.fix_agents
Configures agents for dashboard mode by disabling print statements when dashboard is enabled.
Returns
List[Union[Agent, Callable]]
: The configured list of agents.
agents = workflow.fix_agents()
ConcurrentWorkflow.reliability_check
Validates workflow configuration and ensures agents are properly set up.
Raises
ValueError
: If no agents are provided or if the agents list is empty.
workflow.reliability_check()
ConcurrentWorkflow.activate_auto_prompt_engineering
Enables automatic prompt generation for all agents in the workflow.
workflow.activate_auto_prompt_engineering()
ConcurrentWorkflow.display_agent_dashboard
Displays real-time dashboard showing agent status and progress.
Parameters
Parameter | Type | Default Value | Description |
---|---|---|---|
title |
str |
"ConcurrentWorkflow Dashboard" |
Title for the dashboard. |
is_final |
bool |
False |
Whether this is the final dashboard display. |
workflow.display_agent_dashboard("Execution Progress", is_final=False)
ConcurrentWorkflow.run_with_dashboard
Executes agents with real-time dashboard monitoring and streaming support.
Parameters
Parameter | Type | Description |
---|---|---|
task |
str |
The task to execute. |
img |
Optional[str] |
Optional image for processing. |
imgs |
Optional[List[str]] |
Optional list of images for processing. |
streaming_callback |
Optional[Callable[[str, str, bool], None]] |
Callback for streaming agent outputs. |
Returns
Any
: The formatted conversation history based on output_type.
result = workflow.run_with_dashboard(
task="Analyze this data",
streaming_callback=lambda agent, chunk, done: print(f"{agent}: {chunk}")
)
ConcurrentWorkflow._run
Executes agents concurrently without dashboard monitoring.
Parameters
Parameter | Type | Description |
---|---|---|
task |
str |
The task to execute. |
img |
Optional[str] |
Optional image for processing. |
imgs |
Optional[List[str]] |
Optional list of images for processing. |
streaming_callback |
Optional[Callable[[str, str, bool], None]] |
Callback for streaming agent outputs. |
Returns
Any
: The formatted conversation history based on output_type.
result = workflow._run(
task="Process this task",
streaming_callback=lambda agent, chunk, done: print(f"{agent}: {chunk}")
)
ConcurrentWorkflow._run_agent_with_streaming
Runs a single agent with streaming callback support.
Parameters
Parameter | Type | Description |
---|---|---|
agent |
Union[Agent, Callable] |
The agent or callable to execute. |
task |
str |
The task to execute. |
img |
Optional[str] |
Optional image for processing. |
imgs |
Optional[List[str]] |
Optional list of images for processing. |
streaming_callback |
Optional[Callable[[str, str, bool], None]] |
Callback for streaming outputs. |
Returns
str
: The output from the agent execution.
output = workflow._run_agent_with_streaming(
agent=my_agent,
task="Analyze data",
streaming_callback=lambda agent, chunk, done: print(f"{agent}: {chunk}")
)
ConcurrentWorkflow.cleanup
Cleans up resources and connections used by the workflow.
workflow.cleanup()
ConcurrentWorkflow.run
Main execution method that runs all agents concurrently.
Parameters
Parameter | Type | Description |
---|---|---|
task |
str |
The task to execute. |
img |
Optional[str] |
Optional image for processing. |
imgs |
Optional[List[str]] |
Optional list of images for processing. |
streaming_callback |
Optional[Callable[[str, str, bool], None]] |
Callback for streaming agent outputs. |
Returns
Any
: The formatted conversation history based on output_type.
result = workflow.run(
task="What are the benefits of renewable energy?",
streaming_callback=lambda agent, chunk, done: print(f"{agent}: {chunk}")
)
ConcurrentWorkflow.batch_run
Executes the workflow on multiple tasks sequentially.
Parameters
Parameter | Type | Description |
---|---|---|
tasks |
List[str] |
List of tasks to execute. |
imgs |
Optional[List[str]] |
Optional list of images corresponding to tasks. |
streaming_callback |
Optional[Callable[[str, str, bool], None]] |
Callback for streaming outputs. |
Returns
List[Any]
: List of results for each task.
results = workflow.batch_run(
tasks=["Task 1", "Task 2", "Task 3"],
streaming_callback=lambda agent, chunk, done: print(f"{agent}: {chunk}")
)
Usage Examples
Example 1: Basic Concurrent Execution
from swarms import Agent, ConcurrentWorkflow
# Initialize agents
agents = [
Agent(
agent_name="Research-Agent",
system_prompt="You are a research specialist focused on gathering information.",
model_name="gpt-4",
max_loops=1,
),
Agent(
agent_name="Analysis-Agent",
system_prompt="You are an analysis expert who synthesizes information.",
model_name="gpt-4",
max_loops=1,
),
Agent(
agent_name="Summary-Agent",
system_prompt="You are a summarization expert who creates concise reports.",
model_name="gpt-4",
max_loops=1,
)
]
# Initialize workflow
workflow = ConcurrentWorkflow(
name="Research Analysis Workflow",
description="Concurrent execution of research, analysis, and summarization tasks",
agents=agents,
auto_save=True,
output_type="dict-all-except-first",
show_dashboard=False
)
# Run workflow
task = "What are the environmental impacts of electric vehicles?"
result = workflow.run(task)
print(result)
Example 2: Dashboard Monitoring with Streaming
import time
def streaming_callback(agent_name: str, chunk: str, is_final: bool):
"""Handle streaming output from agents."""
if chunk:
print(f"[{agent_name}] {chunk}", end="", flush=True)
if is_final:
print(f"\n[{agent_name}] Completed\n")
# Initialize workflow with dashboard
workflow = ConcurrentWorkflow(
name="Monitored Workflow",
agents=agents,
show_dashboard=True, # Enable real-time dashboard
output_type="dict-all-except-first"
)
# Run with streaming and dashboard
task = "Analyze the future of artificial intelligence in healthcare"
result = workflow.run(
task=task,
streaming_callback=streaming_callback
)
print("Final Result:", result)
Example 3: Batch Processing Multiple Tasks
# Define multiple tasks
tasks = [
"What are the benefits of renewable energy adoption?",
"How does blockchain technology impact supply chains?",
"What are the challenges of implementing remote work policies?",
"Analyze the growth of e-commerce in developing countries"
]
# Initialize workflow for batch processing
workflow = ConcurrentWorkflow(
name="Batch Analysis Workflow",
agents=agents,
output_type="dict-all-except-first",
show_dashboard=False
)
# Process all tasks
results = workflow.batch_run(tasks=tasks)
# Display results
for i, (task, result) in enumerate(zip(tasks, results)):
print(f"\n{'='*50}")
print(f"Task {i+1}: {task}")
print(f"{'='*50}")
print(f"Result: {result}")
Example 4: Auto-Prompt Engineering
# Initialize agents without specific prompts
agents = [
Agent(
agent_name="Creative-Agent",
model_name="gpt-4",
max_loops=1,
),
Agent(
agent_name="Technical-Agent",
model_name="gpt-4",
max_loops=1,
)
]
# Initialize workflow with auto-prompt engineering
workflow = ConcurrentWorkflow(
name="Auto-Prompt Workflow",
agents=agents,
auto_generate_prompts=True, # Enable auto-prompt generation
output_type="dict-all-except-first"
)
# Activate auto-prompt engineering (can also be done in init)
workflow.activate_auto_prompt_engineering()
# Run workflow
task = "Design a mobile app for fitness tracking"
result = workflow.run(task)
print(result)
Example 5: Error Handling and Cleanup
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
# Initialize workflow
workflow = ConcurrentWorkflow(
name="Reliable Workflow",
agents=agents,
output_type="dict-all-except-first"
)
# Run workflow with proper error handling
try:
task = "Generate a comprehensive report on quantum computing applications"
result = workflow.run(task)
print("Workflow completed successfully!")
print(result)
except Exception as e:
logging.error(f"Workflow failed: {str(e)}")
finally:
# Always cleanup resources
workflow.cleanup()
print("Resources cleaned up")
Example 6: Working with Images
# Initialize agents capable of image processing
vision_agents = [
Agent(
agent_name="Image-Analysis-Agent",
system_prompt="You are an expert at analyzing images and extracting insights.",
model_name="gpt-4-vision-preview",
max_loops=1,
),
Agent(
agent_name="Content-Description-Agent",
system_prompt="You specialize in creating detailed descriptions of visual content.",
model_name="gpt-4-vision-preview",
max_loops=1,
)
]
# Initialize workflow for image processing
workflow = ConcurrentWorkflow(
name="Image Analysis Workflow",
agents=vision_agents,
output_type="dict-all-except-first",
show_dashboard=True
)
# Run with image input
task = "Analyze this image and provide insights about its content"
image_path = "/path/to/image.jpg"
result = workflow.run(
task=task,
img=image_path,
streaming_callback=lambda agent, chunk, done: print(f"{agent}: {chunk}")
)
print(result)
Example 7: Custom Callable Agents
from typing import Optional
def custom_analysis_agent(task: str, img: Optional[str] = None, **kwargs) -> str:
"""Custom analysis function that can be used as an agent."""
# Custom logic here
return f"Custom analysis result for: {task}"
def sentiment_analysis_agent(task: str, img: Optional[str] = None, **kwargs) -> str:
"""Sentiment analysis function."""
# Custom sentiment analysis logic
return f"Sentiment analysis for: {task}"
# Mix of Agent objects and callable functions
mixed_agents = [
Agent(
agent_name="GPT-Agent",
system_prompt="You are a helpful assistant.",
model_name="gpt-4",
max_loops=1,
),
custom_analysis_agent, # Callable function
sentiment_analysis_agent # Another callable function
]
# Initialize workflow with mixed agent types
workflow = ConcurrentWorkflow(
name="Mixed Agents Workflow",
agents=mixed_agents,
output_type="dict-all-except-first"
)
# Run workflow
task = "Analyze customer feedback and provide insights"
result = workflow.run(task)
print(result)