You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
13 KiB
360 lines
13 KiB
# `HierarchicalSwarm`
|
|
|
|
The `HierarchicalSwarm` is a sophisticated multi-agent orchestration system that implements a hierarchical workflow pattern. It consists of a director agent that coordinates and distributes tasks to specialized worker agents, creating a structured approach to complex problem-solving.
|
|
|
|
## Overview
|
|
|
|
The Hierarchical Swarm follows a clear workflow pattern:
|
|
|
|
1. **Task Reception**: User provides a task to the swarm
|
|
2. **Planning**: Director creates a comprehensive plan and distributes orders to agents
|
|
3. **Execution**: Individual agents execute their assigned tasks
|
|
4. **Feedback Loop**: Director evaluates results and issues new orders if needed (up to `max_loops`)
|
|
5. **Context Preservation**: All conversation history and context is maintained throughout the process
|
|
|
|
## Architecture
|
|
|
|
```mermaid
|
|
graph TD
|
|
A[User Task] --> B[Director Agent]
|
|
B --> C[Create Plan & Orders]
|
|
C --> D[Distribute to Agents]
|
|
D --> E[Agent 1]
|
|
D --> F[Agent 2]
|
|
D --> G[Agent N]
|
|
E --> H[Execute Task]
|
|
F --> H
|
|
G --> H
|
|
H --> I[Report Results]
|
|
I --> J[Director Evaluation]
|
|
J --> K{More Loops?}
|
|
K -->|Yes| C
|
|
K -->|No| L[Final Output]
|
|
```
|
|
|
|
## Key Features
|
|
|
|
- **Hierarchical Coordination**: Director agent orchestrates all operations
|
|
- **Specialized Agents**: Each agent has specific expertise and responsibilities
|
|
- **Iterative Refinement**: Multiple feedback loops for improved results
|
|
- **Context Preservation**: Full conversation history maintained
|
|
- **Flexible Output Formats**: Support for various output types (dict, str, list)
|
|
- **Comprehensive Logging**: Detailed logging for debugging and monitoring
|
|
|
|
## `HierarchicalSwarm` Constructor
|
|
|
|
| Parameter | Type | Default | Description |
|
|
|-----------|------|---------|-------------|
|
|
| `name` | `str` | `"HierarchicalAgentSwarm"` | The name of the swarm instance |
|
|
| `description` | `str` | `"Distributed task swarm"` | Brief description of the swarm's functionality |
|
|
| `director` | `Optional[Union[Agent, Callable, Any]]` | `None` | The director agent that orchestrates tasks |
|
|
| `agents` | `List[Union[Agent, Callable, Any]]` | `None` | List of worker agents in the swarm |
|
|
| `max_loops` | `int` | `1` | Maximum number of feedback loops between director and agents |
|
|
| `output_type` | `OutputType` | `"dict-all-except-first"` | Format for output (dict, str, list) |
|
|
| `feedback_director_model_name` | `str` | `"gpt-4o-mini"` | Model name for feedback director |
|
|
| `director_name` | `str` | `"Director"` | Name of the director agent |
|
|
| `director_model_name` | `str` | `"gpt-4o-mini"` | Model name for the director agent |
|
|
| `verbose` | `bool` | `False` | Enable detailed logging |
|
|
| `add_collaboration_prompt` | `bool` | `True` | Add collaboration prompts to agents |
|
|
| `planning_director_agent` | `Optional[Union[Agent, Callable, Any]]` | `None` | Optional planning agent for enhanced planning |
|
|
|
|
## Core Methods
|
|
|
|
### `run(task, img=None, *args, **kwargs)`
|
|
|
|
Executes the hierarchical swarm for a specified number of feedback loops, processing the task through multiple iterations for refinement and improvement.
|
|
|
|
#### Parameters
|
|
|
|
| Parameter | Type | Default | Description |
|
|
|-----------|------|---------|-------------|
|
|
| `task` | `str` | **Required** | The initial task to be processed by the swarm |
|
|
| `img` | `str` | `None` | Optional image input for the agents |
|
|
| `*args` | `Any` | - | Additional positional arguments |
|
|
| `**kwargs` | `Any` | - | Additional keyword arguments |
|
|
|
|
#### Returns
|
|
|
|
| Type | Description |
|
|
|------|-------------|
|
|
| `Any` | The formatted conversation history as output based on `output_type` |
|
|
|
|
#### Example
|
|
|
|
```python
|
|
from swarms import Agent
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
|
|
# Create specialized agents
|
|
research_agent = Agent(
|
|
agent_name="Research-Specialist",
|
|
agent_description="Expert in market research and analysis",
|
|
model_name="gpt-4o",
|
|
)
|
|
|
|
financial_agent = Agent(
|
|
agent_name="Financial-Analyst",
|
|
agent_description="Specialist in financial analysis and valuation",
|
|
model_name="gpt-4o",
|
|
)
|
|
|
|
# Initialize the hierarchical swarm
|
|
swarm = HierarchicalSwarm(
|
|
name="Financial-Analysis-Swarm",
|
|
description="A hierarchical swarm for comprehensive financial analysis",
|
|
agents=[research_agent, financial_agent],
|
|
max_loops=2,
|
|
verbose=True,
|
|
)
|
|
|
|
# Execute a complex task
|
|
task = "Analyze the market potential for Tesla (TSLA) stock"
|
|
result = swarm.run(task=task)
|
|
print(result)
|
|
```
|
|
|
|
### `step(task, img=None, *args, **kwargs)`
|
|
|
|
Runs a single step of the hierarchical swarm, executing one complete cycle of planning, distribution, execution, and feedback.
|
|
|
|
#### Parameters
|
|
|
|
| Parameter | Type | Default | Description |
|
|
|-----------|------|---------|-------------|
|
|
| `task` | `str` | **Required** | The task to be executed in this step |
|
|
| `img` | `str` | `None` | Optional image input for the agents |
|
|
| `*args` | `Any` | - | Additional positional arguments |
|
|
| `**kwargs` | `Any` | - | Additional keyword arguments |
|
|
|
|
#### Returns
|
|
|
|
| Type | Description |
|
|
|------|-------------|
|
|
| `str` | Feedback from the director based on agent outputs |
|
|
|
|
#### Example
|
|
|
|
```python
|
|
from swarms import Agent
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
|
|
# Create development agents
|
|
frontend_agent = Agent(
|
|
agent_name="Frontend-Developer",
|
|
agent_description="Expert in React and modern web development",
|
|
model_name="gpt-4o",
|
|
)
|
|
|
|
backend_agent = Agent(
|
|
agent_name="Backend-Developer",
|
|
agent_description="Specialist in Node.js and API development",
|
|
model_name="gpt-4o",
|
|
)
|
|
|
|
# Initialize the swarm
|
|
swarm = HierarchicalSwarm(
|
|
name="Development-Swarm",
|
|
description="A hierarchical swarm for software development",
|
|
agents=[frontend_agent, backend_agent],
|
|
max_loops=1,
|
|
verbose=True,
|
|
)
|
|
|
|
# Execute a single step
|
|
task = "Create a simple web app for file upload and download"
|
|
feedback = swarm.step(task=task)
|
|
print("Director Feedback:", feedback)
|
|
```
|
|
|
|
### `batched_run(tasks, img=None, *args, **kwargs)`
|
|
|
|
Executes the hierarchical swarm for a list of tasks, processing each task through the complete workflow.
|
|
|
|
#### Parameters
|
|
|
|
| Parameter | Type | Default | Description |
|
|
|-----------|------|---------|-------------|
|
|
| `tasks` | `List[str]` | **Required** | List of tasks to be processed |
|
|
| `img` | `str` | `None` | Optional image input for the agents |
|
|
| `*args` | `Any` | - | Additional positional arguments |
|
|
| `**kwargs` | `Any` | - | Additional keyword arguments |
|
|
|
|
#### Returns
|
|
|
|
| Type | Description |
|
|
|------|-------------|
|
|
| `List[Any]` | List of results for each task |
|
|
|
|
#### Example
|
|
|
|
```python
|
|
from swarms import Agent
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
|
|
# Create analysis agents
|
|
market_agent = Agent(
|
|
agent_name="Market-Analyst",
|
|
agent_description="Expert in market analysis and trends",
|
|
model_name="gpt-4o",
|
|
)
|
|
|
|
technical_agent = Agent(
|
|
agent_name="Technical-Analyst",
|
|
agent_description="Specialist in technical analysis and patterns",
|
|
model_name="gpt-4o",
|
|
)
|
|
|
|
# Initialize the swarm
|
|
swarm = HierarchicalSwarm(
|
|
name="Analysis-Swarm",
|
|
description="A hierarchical swarm for comprehensive analysis",
|
|
agents=[market_agent, technical_agent],
|
|
max_loops=2,
|
|
verbose=True,
|
|
)
|
|
|
|
# Execute multiple tasks
|
|
tasks = [
|
|
"Analyze Apple (AAPL) stock performance",
|
|
"Evaluate Microsoft (MSFT) market position",
|
|
"Assess Google (GOOGL) competitive landscape"
|
|
]
|
|
|
|
results = swarm.batched_run(tasks=tasks)
|
|
for i, result in enumerate(results):
|
|
print(f"Task {i+1} Result:", result)
|
|
```
|
|
|
|
## Advanced Usage Examples
|
|
|
|
### Financial Analysis Swarm
|
|
|
|
```python
|
|
from swarms import Agent
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
|
|
# Create specialized financial agents
|
|
market_research_agent = Agent(
|
|
agent_name="Market-Research-Specialist",
|
|
agent_description="Expert in market research, trend analysis, and competitive intelligence",
|
|
system_prompt="""You are a senior market research specialist with expertise in:
|
|
- Market trend analysis and forecasting
|
|
- Competitive landscape assessment
|
|
- Consumer behavior analysis
|
|
- Industry report generation
|
|
- Market opportunity identification
|
|
- Risk assessment and mitigation strategies""",
|
|
model_name="claude-3-sonnet-20240229",
|
|
)
|
|
|
|
financial_analyst_agent = Agent(
|
|
agent_name="Financial-Analysis-Expert",
|
|
agent_description="Specialist in financial statement analysis, valuation, and investment research",
|
|
system_prompt="""You are a senior financial analyst with deep expertise in:
|
|
- Financial statement analysis (income statement, balance sheet, cash flow)
|
|
- Valuation methodologies (DCF, comparable company analysis, precedent transactions)
|
|
- Investment research and due diligence
|
|
- Financial modeling and forecasting
|
|
- Risk assessment and portfolio analysis
|
|
- ESG (Environmental, Social, Governance) analysis""",
|
|
model_name="claude-3-sonnet-20240229",
|
|
)
|
|
|
|
# Initialize the hierarchical swarm
|
|
financial_analysis_swarm = HierarchicalSwarm(
|
|
name="Financial-Analysis-Hierarchical-Swarm",
|
|
description="A hierarchical swarm for comprehensive financial analysis with specialized agents",
|
|
agents=[market_research_agent, financial_analyst_agent],
|
|
max_loops=2,
|
|
verbose=True,
|
|
)
|
|
|
|
# Execute financial analysis
|
|
task = "Conduct a comprehensive analysis of Tesla (TSLA) stock including market position, financial health, and investment potential"
|
|
result = financial_analysis_swarm.run(task=task)
|
|
print(result)
|
|
```
|
|
|
|
### Development Department Swarm
|
|
|
|
```python
|
|
from swarms import Agent
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
|
|
# Create specialized development agents
|
|
frontend_developer_agent = Agent(
|
|
agent_name="Frontend-Developer",
|
|
agent_description="Senior frontend developer expert in modern web technologies and user experience",
|
|
system_prompt="""You are a senior frontend developer with expertise in:
|
|
- Modern JavaScript frameworks (React, Vue, Angular)
|
|
- TypeScript and modern ES6+ features
|
|
- CSS frameworks and responsive design
|
|
- State management (Redux, Zustand, Context API)
|
|
- Web performance optimization
|
|
- Accessibility (WCAG) and SEO best practices""",
|
|
model_name="claude-3-sonnet-20240229",
|
|
)
|
|
|
|
backend_developer_agent = Agent(
|
|
agent_name="Backend-Developer",
|
|
agent_description="Senior backend developer specializing in server-side development and API design",
|
|
system_prompt="""You are a senior backend developer with expertise in:
|
|
- Server-side programming languages (Python, Node.js, Java, Go)
|
|
- Web frameworks (Django, Flask, Express, Spring Boot)
|
|
- Database design and optimization (SQL, NoSQL)
|
|
- API design and REST/GraphQL implementation
|
|
- Authentication and authorization systems
|
|
- Microservices architecture and containerization""",
|
|
model_name="claude-3-sonnet-20240229",
|
|
)
|
|
|
|
# Initialize the development swarm
|
|
development_department_swarm = HierarchicalSwarm(
|
|
name="Autonomous-Development-Department",
|
|
description="A fully autonomous development department with specialized agents",
|
|
agents=[frontend_developer_agent, backend_developer_agent],
|
|
max_loops=3,
|
|
verbose=True,
|
|
)
|
|
|
|
# Execute development project
|
|
task = "Create a simple web app that allows users to upload a file and then download it. The app should be built with React and Node.js."
|
|
result = development_department_swarm.run(task=task)
|
|
print(result)
|
|
```
|
|
|
|
## Output Types
|
|
|
|
The `HierarchicalSwarm` supports various output formats through the `output_type` parameter:
|
|
|
|
| Output Type | Description | Use Case |
|
|
|-------------|-------------|----------|
|
|
| `"dict-all-except-first"` | Returns all conversation history as a dictionary, excluding the first message | Default format for comprehensive analysis |
|
|
| `"dict"` | Returns conversation history as a dictionary | When you need structured data |
|
|
| `"str"` | Returns conversation history as a string | For simple text output |
|
|
| `"list"` | Returns conversation history as a list | For sequential processing |
|
|
|
|
## Best Practices
|
|
|
|
1. **Agent Specialization**: Create agents with specific, well-defined expertise areas
|
|
2. **Clear Task Descriptions**: Provide detailed, actionable task descriptions
|
|
3. **Appropriate Loop Count**: Set `max_loops` based on task complexity (1-3 for most tasks)
|
|
4. **Verbose Logging**: Enable verbose mode during development for debugging
|
|
5. **Context Preservation**: Leverage the built-in conversation history for continuity
|
|
6. **Error Handling**: Implement proper error handling for production use
|
|
|
|
## Error Handling
|
|
|
|
The `HierarchicalSwarm` includes comprehensive error handling with detailed logging. Common issues and solutions:
|
|
|
|
- **No Agents**: Ensure at least one agent is provided
|
|
- **Invalid Director**: Verify the director agent is properly configured
|
|
- **Max Loops**: Set `max_loops` to a value greater than 0
|
|
- **Model Issues**: Check that all agents have valid model configurations
|
|
|
|
## Performance Considerations
|
|
|
|
- **Loop Optimization**: Balance between thoroughness and performance with `max_loops`
|
|
- **Agent Count**: More agents increase coordination overhead
|
|
- **Model Selection**: Choose appropriate models for your use case and budget
|
|
- **Verbose Mode**: Disable verbose logging in production for better performance |