feat: add prepare-dev-data target and script for Musique dev data transformation

main
thinhlpg 4 weeks ago
parent 504f0c6c8e
commit 333d1e596e

@ -1,4 +1,4 @@
.PHONY: style quality install tensorboard clean fix update-worklog test data download-musique prepare-musique-jsonl extract-musique-paragraphs build-musique-index prepare-musique-index prepare-all-musique check-data .PHONY: style quality install tensorboard clean fix update-worklog test data download-musique prepare-musique-jsonl extract-musique-paragraphs build-musique-index prepare-musique-index prepare-all-musique check-data prepare-dev-data
# make sure to test the local checkout in scripts and not the pre-installed one # make sure to test the local checkout in scripts and not the pre-installed one
export PYTHONPATH = src export PYTHONPATH = src
@ -70,10 +70,16 @@ prepare-all-musique: data prepare-musique-index
@echo "All Musique data and index preparation complete." @echo "All Musique data and index preparation complete."
# Check Data # Check Data
check-data: prepare-all-musique check-data: prepare-all-musique prepare-dev-data
@echo "Checking generated data files..." @echo "Checking generated data files..."
python scripts/check_data.py python scripts/check_data.py
# Prepare Dev Data
prepare-dev-data: download-musique
@echo "Preparing Musique DEV data (JSONL)..."
python scripts/train_data/prepare_musique_dev_jsonl.py
@echo "Processed Musique DEV JSONL ready in ./data/processed/questions_dev.jsonl"
# Clean up # Clean up
clean: clean:
find . -type d -name "__pycache__" -exec rm -r {} + find . -type d -name "__pycache__" -exec rm -r {} +

@ -0,0 +1,155 @@
"""Prepares a deterministic sampled dev set (questions_dev.jsonl) from raw Musique dev data."""
import json
import math
import os
import re
from collections import defaultdict
from pathlib import Path
def transform_musique_dev_data(input_path: str, output_path: str, sample_config: dict) -> None:
"""Transforms Musique dev data with deterministic stratified sampling using uniform selection from sorted lists.
Reads dev data, categorizes by hop type (2, 3, 4), sorts categories by ID,
selects N samples uniformly spaced from each sorted category based on sample_config,
combines, sorts final list by ID, combines answers/aliases, extracts supporting paras,
and writes the transformed data to output_path.
Args:
input_path: Path to the input JSONL file (e.g., data/raw/musique_ans_v1.0_dev.jsonl).
output_path: Path to the output JSONL file (e.g., data/processed/questions_dev.jsonl).
sample_config: Dictionary specifying samples per hop type (e.g., {"2hop": 20, "3hop": 15, "4hop": 15}).
"""
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
print(f"Reading all data from {input_path} for dev sampling...")
all_data = []
try:
with open(input_path, "r", encoding="utf-8") as infile:
for line_num, line in enumerate(infile, 1):
try:
data = json.loads(line)
if "id" in data:
all_data.append(data)
else:
print(f"Warning: Skipping line {line_num} due to missing 'id' field in {input_path}")
except json.JSONDecodeError:
print(f"Warning: Skipping invalid JSON in line {line_num} of {input_path}")
except FileNotFoundError:
print(f"Error: Input file not found at {input_path}")
return
except Exception as e:
print(f"Error reading file {input_path}: {e}")
return
print(f"Read {len(all_data)} total samples from dev set.")
# Categorize data by hop count (2hop, 3hop, 4hop)
categorized_data = defaultdict(list)
print("Categorizing data by hop type (2, 3, 4)...")
for data in all_data:
q_id = data["id"]
hop_type = None
if q_id.startswith("2hop"):
hop_type = "2hop"
elif q_id.startswith("3hop"):
hop_type = "3hop"
elif q_id.startswith("4hop"):
hop_type = "4hop"
if hop_type:
categorized_data[hop_type].append(data)
# Deterministic sampling using sorting and uniform index selection
final_sample_list = []
total_target = sum(sample_config.values())
print(f"Sampling deterministically via uniform selection from sorted lists to get {total_target} dev samples...")
for hop_type, target_count in sample_config.items():
available_samples = categorized_data.get(hop_type, [])
current_count = len(available_samples)
print(f" {hop_type}: Found {current_count} samples, need {target_count}.")
if current_count == 0:
continue
available_samples.sort(key=lambda x: x["id"])
selected_samples_for_hop = []
if current_count < target_count:
print(f" Warning: Not enough samples for {hop_type}. Taking all {current_count} sorted samples.")
selected_samples_for_hop = available_samples
elif target_count > 0: # Ensure target_count is positive before selecting
print(f" Selecting {target_count} samples uniformly from {current_count}...")
# Calculate indices using integer interpretation of evenly spaced points
indices_to_take = [
int(i * (current_count - 1) / (target_count - 1)) if target_count > 1 else 0
for i in range(target_count)
] # Adjust index calc for edges
indices_to_take = sorted(list(set(indices_to_take))) # Ensure unique indices
# Simple fallback if uniqueness reduced count below target
while len(indices_to_take) < target_count and len(indices_to_take) < current_count:
next_val = indices_to_take[-1] + 1
if next_val < current_count:
indices_to_take.append(next_val)
else: # Cannot add more unique indices
break
selected_samples_for_hop = [
available_samples[idx] for idx in indices_to_take[:target_count]
] # Select based on unique indices, capped at target
final_sample_list.extend(selected_samples_for_hop)
print(f"Selected {len(final_sample_list)} dev samples in total.")
# Sort the final combined list by ID for consistent output order
print("Sorting the final combined dev sample list by ID...")
final_sample_list.sort(key=lambda x: x["id"])
# Process and write the selected samples
print(f"Processing and writing {len(final_sample_list)} selected dev samples to {output_path}...")
count = 0
try:
with open(output_path, "w", encoding="utf-8") as outfile:
for data in final_sample_list:
try:
supporting_paragraphs = [
p["paragraph_text"] for p in data.get("paragraphs", []) if p.get("is_supporting", False)
]
main_answer = data.get("answer", "")
aliases = data.get("answer_aliases", [])
all_answers = [main_answer] + (aliases if isinstance(aliases, list) else [])
valid_answers = [str(ans).strip() for ans in all_answers if ans and str(ans).strip()]
unique_valid_answers = list(set(valid_answers)) # Keep unique, don't sort alphabetically
combined_answer_str = " OR ".join(unique_valid_answers)
output_data = {
"id": data.get("id"),
"question": data.get("question"),
"answer": combined_answer_str,
"supporting_paragraphs": supporting_paragraphs,
}
outfile.write(json.dumps(output_data) + "\n")
count += 1
except KeyError as e:
print(f"Skipping sample due to missing key {e}: {data.get('id')}")
print(f"Successfully processed and wrote {count} dev samples.")
except Exception as e:
print(f"An unexpected error occurred during writing: {e}")
if __name__ == "__main__":
# Define file paths relative to the project root
# Ensure this script is run from the project root or adjust paths accordingly
RAW_DIR = Path("data/raw")
PROCESSED_DIR = Path("data/processed")
# Define sampling configuration for the dev set
DEV_SAMPLING_CONFIG = {"2hop": 20, "3hop": 15, "4hop": 15} # Total = 50
INPUT_FILE = RAW_DIR / "musique_ans_v1.0_dev.jsonl"
OUTPUT_FILE = PROCESSED_DIR / "questions_dev.jsonl"
transform_musique_dev_data(str(INPUT_FILE), str(OUTPUT_FILE), DEV_SAMPLING_CONFIG)
print(f"\nMusique DEV JSONL transformation and deterministic sampling complete.")
Loading…
Cancel
Save