You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
10 KiB
10 KiB
Face Recognition Service - Sequence Diagrams
1. Face Registration Flow
sequenceDiagram
participant User
participant GradioUI as Gradio Interface
participant RegisterUC as RegisterFaceUseCase
participant UserRepo as MongoDBUserRepository
participant FaceService as FaceRecognitionService
participant Detector as RetinaFaceDetector
participant Recognizer as SFaceRecognizer
participant FaceRepo as MongoDBFaceRepository
participant VectorStore as ChromaDBVectorStore
participant FileStorage as FileSystemStorage
participant MongoDB as MongoDB Database
participant ChromaDB as ChromaDB Vector DB
User->>GradioUI: Upload images + username
GradioUI->>RegisterUC: execute(username, images)
RegisterUC->>UserRepo: get_user_by_name(username)
UserRepo->>MongoDB: Query user by name
MongoDB-->>UserRepo: User data or null
UserRepo-->>RegisterUC: User entity or null
alt User doesn't exist
RegisterUC->>UserRepo: save(new_user)
UserRepo->>MongoDB: Insert new user
MongoDB-->>UserRepo: User ID
UserRepo-->>RegisterUC: User ID
end
loop For each image
RegisterUC->>FaceService: register_face(user_id, image)
FaceService->>Detector: detect_faces(image)
Detector-->>FaceService: List of detected faces
alt No faces detected
FaceService-->>RegisterUC: null
else Face detected
FaceService->>Detector: calculate_quality_score(best_face)
Detector-->>FaceService: Quality score
alt Quality too low
FaceService-->>RegisterUC: null
else Quality acceptable
FaceService->>Detector: align_face(image, landmarks)
Detector-->>FaceService: Aligned face image
FaceService->>Recognizer: extract_embedding(aligned_face)
Recognizer-->>FaceService: Face embedding
FaceService->>FileStorage: save_image(aligned_face, user_id)
FileStorage-->>FaceService: Image path
FaceService->>FaceRepo: save(face_entity)
FaceRepo->>MongoDB: Insert face record
MongoDB-->>FaceRepo: Success
FaceRepo-->>FaceService: Success
FaceService->>VectorStore: add(face_id, embedding, metadata)
VectorStore->>ChromaDB: Store embedding vector
ChromaDB-->>VectorStore: Success
VectorStore-->>FaceService: Success
FaceService-->>RegisterUC: Face ID
end
end
end
RegisterUC->>FaceService: update_user_mean_embedding(user_id)
FaceService->>FaceRepo: get_by_user_id(user_id)
FaceRepo->>MongoDB: Query faces by user_id
MongoDB-->>FaceRepo: Face records
FaceRepo-->>FaceService: Face entities
FaceService-->>RegisterUC: Mean embedding
RegisterUC->>UserRepo: update_user(user)
UserRepo->>MongoDB: Update user record
MongoDB-->>UserRepo: Success
UserRepo-->>RegisterUC: Success
RegisterUC-->>GradioUI: Success message
GradioUI-->>User: Registration result
2. Face Verification Flow
sequenceDiagram
participant User
participant GradioUI as Gradio Interface
participant VerifyUC as VerifyFaceUseCase
participant UserRepo as MongoDBUserRepository
participant FaceService as FaceRecognitionService
participant Detector as RetinaFaceDetector
participant Recognizer as SFaceRecognizer
participant FaceRepo as MongoDBFaceRepository
participant MongoDB as MongoDB Database
User->>GradioUI: Upload image + username
GradioUI->>VerifyUC: execute(username, image)
VerifyUC->>UserRepo: get_user_by_name(username)
UserRepo->>MongoDB: Query user by name
MongoDB-->>UserRepo: User data or null
UserRepo-->>VerifyUC: User entity or null
alt User not found
VerifyUC-->>GradioUI: VerificationResult(false, 0.0)
else User found
VerifyUC->>FaceService: verify_face(user_id, image)
FaceService->>Detector: detect_faces(image)
Detector-->>FaceService: List of detected faces
alt No faces detected
FaceService-->>VerifyUC: (false, 0.0)
else Face detected
FaceService->>Detector: align_face(image, landmarks)
Detector-->>FaceService: Aligned face image
FaceService->>Recognizer: extract_embedding(aligned_face)
Recognizer-->>FaceService: Query embedding
FaceService->>FaceRepo: get_by_user_id(user_id)
FaceRepo->>MongoDB: Query registered faces
MongoDB-->>FaceRepo: Face records
FaceRepo-->>FaceService: User's face entities
alt No registered faces
FaceService-->>VerifyUC: (false, 0.0)
else Compare with registered faces
loop For each registered face
FaceService->>Recognizer: calculate_similarity(query_embedding, face_embedding)
Recognizer-->>FaceService: Similarity score
end
FaceService-->>VerifyUC: (is_verified, max_similarity)
end
end
VerifyUC-->>GradioUI: VerificationResult
end
GradioUI-->>User: Verification result
3. Face Identification Flow
sequenceDiagram
participant User
participant GradioUI as Gradio Interface
participant IdentifyUC as IdentifyFaceUseCase
participant UserRepo as MongoDBUserRepository
participant FaceService as FaceRecognitionService
participant Detector as RetinaFaceDetector
participant Recognizer as SFaceRecognizer
participant VectorStore as ChromaDBVectorStore
participant ChromaDB as ChromaDB Vector DB
participant MongoDB as MongoDB Database
User->>GradioUI: Upload image
GradioUI->>IdentifyUC: execute(image)
IdentifyUC->>FaceService: identify_face(image)
FaceService->>Detector: detect_faces(image)
Detector-->>FaceService: List of detected faces
alt No faces detected
FaceService-->>IdentifyUC: (null, 0.0, [])
else Face detected
FaceService->>Detector: align_face(image, landmarks)
Detector-->>FaceService: Aligned face image
FaceService->>Recognizer: extract_embedding(aligned_face)
Recognizer-->>FaceService: Query embedding
FaceService->>VectorStore: search_similar(query_embedding, top_k=10)
VectorStore->>ChromaDB: Vector similarity search
ChromaDB-->>VectorStore: Similar face vectors
VectorStore-->>FaceService: Similar faces with metadata
alt No similar faces above threshold
FaceService-->>IdentifyUC: (null, 0.0, [])
else Similar faces found
note over FaceService: Group by user_id and calculate best scores
FaceService-->>IdentifyUC: (best_user_id, confidence, candidates)
end
end
loop For each candidate user_id
IdentifyUC->>UserRepo: get_by_id(user_id)
UserRepo->>MongoDB: Query user by ID
MongoDB-->>UserRepo: User data
UserRepo-->>IdentifyUC: User entity
end
alt User identified
IdentifyUC->>UserRepo: get_by_id(best_user_id)
UserRepo->>MongoDB: Query identified user
MongoDB-->>UserRepo: User data
UserRepo-->>IdentifyUC: User entity
end
IdentifyUC-->>GradioUI: IdentificationResult
GradioUI-->>User: Identification result
4. System Initialization Flow
sequenceDiagram
participant Main as main.py
participant Config as Settings
participant MongoDB as MongoDBFaceRepository
participant ChromaDB as ChromaDBVectorStore
participant FileStorage as FileSystemStorage
participant Detector as RetinaFaceDetector
participant Recognizer as SFaceRecognizer
participant FaceService as FaceRecognitionService
participant UseCases as Use Cases
participant GradioApp as Gradio Interface
Main->>Config: Load configuration
Config-->>Main: Settings object
Main->>MongoDB: Initialize with MongoDB URL
MongoDB-->>Main: Repository instance
Main->>ChromaDB: Initialize with Chroma host/port
ChromaDB-->>Main: Vector store instance
Main->>FileStorage: Initialize with upload directory
FileStorage-->>Main: File storage instance
Main->>Detector: Initialize RetinaFace
note over Detector: Load ONNX models, prepare ctx
Detector-->>Main: Detector instance
Main->>Recognizer: Initialize SFace
note over Recognizer: Download/load SFace ONNX model
Recognizer-->>Main: Recognizer instance
Main->>FaceService: Initialize with dependencies
FaceService-->>Main: Service instance
Main->>UseCases: Initialize use cases with service
UseCases-->>Main: Use case instances
Main->>GradioApp: create_gradio_interface(use_cases)
GradioApp-->>Main: Gradio app instance
Main->>GradioApp: launch(server_name, server_port)
note over GradioApp: Start web server on port 7860
GradioApp-->>Main: Server running
Flow Descriptions
Registration Flow
- User uploads multiple images with username
- System checks if user exists, creates if needed
- For each image: detects faces, validates quality, extracts embeddings
- Stores face metadata in MongoDB, embeddings in ChromaDB, images in filesystem
- Updates user with mean embedding for faster verification
Verification Flow (1:1)
- User provides image and username to verify against
- System detects face in query image and extracts embedding
- Retrieves all registered faces for the specified user
- Compares query embedding with user's registered face embeddings
- Returns verification result based on similarity threshold
Identification Flow (1:N)
- User provides image without specifying identity
- System detects face and extracts embedding
- Performs vector similarity search across all registered faces
- Groups results by user and calculates confidence scores
- Returns best match if confidence exceeds threshold
Initialization Flow
System startup involves initializing all dependencies in correct order, loading ML models, and starting the web interface.