You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kempt-kinkajou-2023/weather_platform/apps/py-tg-bot-weather-agent/examples/files/extracted_data.csv

10 KiB

1RankPaper TitleScoreData preprocessingData augmentationImbalanceEnd-to-endEnsembleMulti-binary classificationFeature engineeringHand FeaturesTemporalFrequentDemographic FeaturesDNNCNNRNN/TransformerAttentionBackboneOthers
21A Wide & Deep Transformer Neural Network for 12-Lead ECG Classification0.533Sampling rate 500Hz; Bandwidth 3 - 45 Hz; Value -1 - 1; Window size 15s 0-paddingNoNoYesTop 3 best models from 10 folds CVYesYesNoNoNoage,sex + 20 top identified features by random forest modelYesYesTransformerInherently in Transformer (location wise)ResNet + Transformer + hand features + ensembleNone
32Adaptive lead weighted ResNet trained with different duration signals for classifying 12-lead ECGs0.52Sampling rate 257 Hz; Value -1 - 1; Window size 4096(16s) 0-paddingNoThresholdingYesEnsemble 5 CV modelsYesYesNoNoNoonly age and sexYesYesNoSqueeze-And-Excitation (channel wise)ResNet + SENone
43Classification of Cardiac Abnormalities from ECG Signals using SE-ResNet0.514Sampling rate 500Hz; Window size 30s 0-padding; Exclude 4 leads; Wavelet denoiseWith external data: HefeiSign lossYesRule model for bradycardiaYesNoNoNoNoNoYesYesNoSqueeze-And-Excitation (channel wise)ResNet + SENone
54Combining Scatter Transform and Deep Neural Networks for Multilabel Electrocardiogram Signal Classification0.485Sampling rate 500Hz; Value -1 - 1; Window size 10240(20.48 s) Add noise and driftNoYesNoYesNoNoNoNoNoYesYesTransformerInherently in Transformer (location wise)ResNet + TransformerNone
65Classification of 12-lead ECG Signals with Adversarial Multi-Source Domain Generalization0.437Sampling rate 250Hz; Value normalizedAdd or filter frequency components; Substitute, shuffle, invert, filt and scale lead dataNoYesNoYesYesNoNoNoonly age and sexYesYesYesNoResNet + RNNDomain-adversarial training
76Bag of Tricks for Electrocardiogram Classification with Deep Neural Networks0.42Sampling rate 500Hz; Bandwith 50-60Hz; Value use mean and std; Exlude PTB and StPetersburg datasetsManifold MixupWeighted loss, ThresholdingYesEnsemble 10 CV modelsYesNoNoNoNoNoYesYesNoNoResNetNone
87Automated Comprehensive Interpretation of 12-lead Electrocardiograms Using Pre-trained Exponentially Dilated Causal Convolutional Neural Networks0.417Sampling rate 500HzWith external data: UMCUWeighted loss (focal)YesNoYesNoNoNoNoNoYesYesNoNoResNetNone
98SE-ECGNet : Multi-scale SE-Net for Multi-lead ECG Data0.411Window sizw 10sRandom shift signals; Add Gaussian noiseThresholdingYesNoYesYesNoNoNoonly age and sexYesYesNoSqueeze-And-Excitation (channel wise)ResNet + SENone
109Impact of Neural Architecture Design on Cardiac Abnormality Classification Using 12-lead ECG Signals0.382Window size 10s 0-paddingNoThresholdingYesNoYesNoNoNoNoNoYesYesYesNoResNet + BiLSTMNAS
1110Automatic Detection and Classification of 12-lead ECGs Using a Deep Neural Network0.359Sampling rate 500Hz; Window size 10s 0-paddingNoNoYesNoYesYesNoNoNoonly age and sexYesYesNoSqueeze-And-Excitation (channel wise)ResNet + SENone
1211Cardiac Pathologies Detection and Classification in 12-lead ECG0.354NoNoNoNoNoYesYesYesYesYesNoNoNoNoNoRule basedNone
1312Rule-Based Method and Deep Learning Networks for Automatic Classification of ECG0.298Sampling rate 500 HzNoAt most N_max instancesNoNoYesYesYesYesYesNoYesYesNoNoRuleCWT transforms signal to scalogram image
1413Convolutional Recurrent Neural Network and LightGBM Ensemble Model for 12-lead ECG Classification0.281Samping rate 500Hz; Bandwidth 0.01 - 20 Hz; Window size 10s NoSMOTENoYesYesYesYesYesYesonly age and sexYesYesYesYesCRNN + LightGBMNone
151412-lead ECG Arrythmia Classification Using Convolutional Neural Network for Mutually Non-Exclusive Classes0.279Samping rate 100Hz, Window size 10 s; Median filter with 5 samples; Subtract mean of 50 samplesNoNoYesNoYesNoNoNoNoNoYesYesNoNoCNNNone
1615Cardiac Abnormality Detection in 12-lead ECGs With Deep Convolutional Neural Networks Using Data Augmentation0.27Sampling rate 500 Hz; Bandwidth 0.5 - 45 Hz; Uniform filter with 50 samplesSignal slicing; CutOut; Channel shifting; Additive noise; DropoutNoYesNoNoNoNoNoNONOYesYesNoNoResNetData augmentation
1716A Bio-toolkit for Multi-Cardiac Abnormality Diagnosis Using ECG Signal and Deep Learning0.26Cardiac cycle 400 samples; Bandwidth 3 - 45 Hz;NoNoYesNoNoNoNoNoNoNoYesYesLSTMNoCNN+LSTMNone
1817Multi-label Arrhythmia Classification From 12-Lead Electrocardiograms0.24Bandwidth 12 - 50 Hz; Median filter with 10ms; NoUndersample the majority classNo (Feature extraction)NoYesYesYesYesYesNoYesYesYesNoAlexNet, LSTM, SVM… for different classesFeature Map Generation algorithm design
1918MADNN : A Multi-scale Attention Deep Neural Network for Arrhythmia Classification Data preprocessing0.24Sampling rate 500 Hz, Window size 30000(60 s) copy-paddingRomdomly cropFocal loss; Balance factor to filter samplesYesVGG, XceptionNoNoNoNoNoNoYesYesNoYesResNet+SE+SKData augmentation
2019Classification of 12-lead ECGs Using Gradient Boosting on Features Acquired With Domain-Specific and Domain-Agnostic Methods0.23Bandwidth 0-80 Hz; Median filter with 200 ms and 600 msNoRe-weight positive samplesNo (Feature extraction)NoNoYesYesYesYesNoNoNoNoNoXGBoostFeature extraction
2120Convolutional Neural Network and Rule-Based Algorithms for Classifying 12-lead ECGs0.21Samping rate 500Hz; Window size 5000(10s) 0-paddingNoNoYesNoNoYesNoNoNoonly age and sexYesYesNoNoCNN+Rule-based model (HRV-score)RMSSD
2221Automated Classification of Electrocardiograms Using Wavelet Analysis and Deep Learning0.21NoNoUndersample the majority classNoNoYesYesYesNoYesNoYesYesNoNoSqueezeNet, 12 models for each lead with voting schemeNone
2322ECG Abnormalities Recognition Using Convolutional Network With Global Skip Connections and Custom Loss Function0.2Sampling rate 125 HzNoWCE loss functionYesNoNoNoNoNoNoNoYesYesNoNoResNet+Custom Loss FunctionNone
2423Multi-Class Classification of Pathologies Found on Short ECG Signals0.19Samping rate250HzNoNoYesNoYesYesYesYesNoNoNoNoNoNoECOC, BaggingNone
2524ECG Classification with a Convolutional Recurrent Neural Network0.17Samping rate 257 Hz, Bandwidth 0.5- HzRandom offsetFocal loss; Oversampling; MLSMOTE; An ensemble of binary and multi-label deep modelsYesNoNoNoNoNoNoNoYesYesGRUNoCRNNTime Augmentation
2625Interpretable XGBoost Based Classification of 12-lead ECGs Applying Information Theory Measures From Neuroscience0.16Bandwidth 1.5-25 Hz; db4NoUndersample the majority classNo (Feature extraction)NoYesYesYesYesYesknown patient metadata.NoNoNoNoXGBoostNone
2726Identification of Cardiac Arrhythmias from 12-lead ECG using Beat-wise Analysis and a Combination of CNN and LSTM0.15Sampling rate 500 Hz; Window size 10s 0-padding, Bandwith 0-50 Hz; MODWT; db5; LOESSNoSelect most significant beats numberYesNoNoNoNoNoNoNoYesYesLSTMNoCNN+BiLSTMNone
2827Classification of 12-Lead Electrocardiograms Using Residual Neural Networks and Transfer Learning0.14Sampling rate 250Hz; Window size 10sWith external data: MUSENoYesNoNoNoNoNoNoNoYesYesNoNoResNetNone
2928ECG Segmentation Using a Neural Network as the Basis for Detection of Cardiac Pathologies0.14Sampling rate 500 Hz; Bandwith 0.05-42 Hz; db4NoFocal lossNo (Feature extraction)NoYesYesYesYesNoNoYesYesNoNoUnet+XGBoostNone
3029Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble0.132Sampling rate 400hz; Window size 4096 0-paddingNoCorrelation factorYes7 convolutional models NoNoNoNoNoNoYesYesNoNoResNetNone
3130Utilization of Residual CNN-GRU With Attention Mechanism for Classification of 12-lead ECG0.122Sampling rate 250 HzPower envelopesNoYesYesNoNoNoNoNoNoYesYesGRUNoResNet + RNNNone
3231Selected Features for Classification of 12-lead ECGs0.102Bandwidth 1- Hz; Median filter NoNoNoBootstrap-aggregated NoYesYesYesNoonly age and sexNoNoNoNoDecision treeFeatre extraction
3332Classification of 12 Lead ECG Signal Using 1D-Convolutional Neural Network With Class Dependent Threshold0.077Sampling rate 500 Hz; Window size 10000 copy-padding; Converted to physical unit(mV)NoNoYesNoYesNoNoNoNoNoYesYesNoNoCNNNone
3433Deep Multi-Label Multi-Instance Classification on 12-Lead ECG0.001Bandwidth 0.5 - 50 HzRandomly sampledBCELossYesNoYesNoNoNoNoNoYesYesNoYesResNet Encoder+attention-based MIC+DecoderNone
3534Diagnostic of Multiple Cardiac Disorders from 12-lead ECGs Using Graph Convolutional Network Based Multi-label Classification-0.012Sampling rate 500 Hz; Window size 18s 0-paddingNoNoYesYesYesNoNoNoNoNoYesYesGRUNoCNN+BiGRU+GCNCNN+BiGRU+GCN(GRN for label correlations)
3635Automatic Concurrent Arrhythmia Classification Using Deep Residual Neural Networks-0.035Window size 2500NoNoYesYesNoNoNoNoNoNoYesYesRNN GRU LSTMYesResNetNone
3736Multilabel 12-Lead Electrocardiogram Classification Using Gradient Boosting Tree Ensemble-0.08Sampling rate 0-500 Hz; Window middle 2,000 samples(R:-0.35-0.5s); Average filter with 0.02s; NoOversampling; Re-weightNoYesYesYesYesYesNoNoNoNoNoNoXGboostNone
3837A Topology Informed Random Forest Classifier for ECG Classification-0.1131800 time pointsNoNoNoNoNoYesYesYesNodemographic dataNoNoNoNorandom forestpoint cloud embedding
3938Detection of Cardiac Arrhythmias From Varied Length Multichannel Electrocardiogram Recordings Using Deep Convolutional Neural Networks-0.128Window size 3000 0-paddingNoThresholdingYesNoNoNoNoNoNoNoYesYesNoNoVGG16None
4039Multi-Stream Deep Neural Network For 12-Lead ECG Classification-0.29Bandwidth 0.1-30 Hz NoNoNo (Feature extraction)YesNoYesYesYesNoNoYesYesNoNoCNNCNN+feature extraction
4140Classification of 12-lead ECG with an Ensemble Machine Learning Approach-0.476Sampling rate 500 Hz; Bandwidth 0.67-30 HzVector magnitude for detect beatsNoNo (Feature extraction)YesYesYesYesYesNoNoYesYesNoNoCNN3 CNNs for signal + FFNN for phythm + PVC detection
4241Classification of 12-lead ECGs using digital biomarkersand representation learning-0.658Sampling rate 500 Hz; Bandwidth 0.13-88 Hz; bSQ>0.8;NoOversamplingNoYesNoYesYesYesNoonly age and sexYesYesGRUNoCNN+GRUfeature engineering + CNN