Merge branch 'main' into fix/precommit-tests

pull/213/head
Ty Fiero 9 months ago committed by GitHub
commit 0eca547fc0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -16,11 +16,8 @@ We want to help you build. [Apply for 1-on-1 support.](https://0ggfznkwh4j.typef
<br>
---
⚠️ **WARNING:** This experimental project is under rapid development and lacks basic safeguards. Until a stable `1.0` release, **ONLY** run this repository on devices without sensitive information or access to paid services. ⚠️
---
> [!IMPORTANT]
> This experimental project is under rapid development and lacks basic safeguards. Until a stable `1.0` release, only run this repository on devices without sensitive information or access to paid services.
<br>

@ -10,4 +10,3 @@ In the coming months, we're going to release:
- [ ] An open-source language model for computer control
- [ ] A react-native app for your phone
- [ ] A hand-held device that runs fully offline.

@ -16,11 +16,8 @@
<br>
---
⚠️ **警告:** 这个实验性项目正在快速开发中,并且缺乏基本的安全保障。在稳定的 1.0 版本发布之前, **仅在**没有敏感信息或访问付费服务的设备上运行此存储库。⚠️
---
> [!IMPORTANT]
> 这个实验性项目正在快速开发中,并且缺乏基本的安全保障。在稳定的 `1.0` 版本发布之前, 仅在没有敏感信息或访问付费服务的设备上运行此存储库。
<br>
@ -39,7 +36,7 @@ git clone https://github.com/OpenInterpreter/01 # Clone the repository
cd 01/software # CD into the source directory
```
<!-- > Not working? Read our [setup guide](https://docs.openinterpreter.com/getting-started/setup). -->
<!-- > 不起作用?阅读我们的[安装指南](https://docs.openinterpreter.com/getting-started/setup)。 -->
```shell
brew install portaudio ffmpeg cmake # Install Mac OSX dependencies
@ -48,6 +45,8 @@ export OPENAI_API_KEY=sk... # OR run `poetry run 01 --local` to run everything l
poetry run 01 # Runs the 01 Light simulator (hold your spacebar, speak, release)
```
<!-- > 对于Windows安装请阅读我们的[专用安装指南](https://docs.openinterpreter.com/getting-started/setup#windows)。 -->
<br>
# 硬件
@ -78,7 +77,9 @@ poetry run 01 # Runs the 01 Light simulator (hold your spacebar, speak, release)
## LMC 消息
为了与系统的不同组件进行通信,我们引入了 [LMC 消息](https://docs.openinterpreter.com/protocols/lmc-messages) 格式,它扩展了 OpenAI 的消息格式以包含一个 "computer" 角色。
为了与系统的不同组件进行通信,我们引入了 [LMC 消息](https://docs.openinterpreter.com/protocols/lmc-messages) 格式,它扩展了 OpenAI 的消息格式以包含一个 "computer" 角色:
https://github.com/OpenInterpreter/01/assets/63927363/8621b075-e052-46ba-8d2e-d64b9f2a5da9
## 动态系统消息

@ -39,7 +39,7 @@ git clone https://github.com/OpenInterpreter/01 # Clone le dépôt
cd 01/software # CD dans le répertoire source
```
<!-- > Cela ne fonctionne pas ? Lis notre [guide d'installation](https://docs.openinterpreter.com/getting-started/setup). -->
<!-- > Cela ne fonctionne pas ? Lisez notre [guide d'installation](https://docs.openinterpreter.com/getting-started/setup). -->
```shell
brew install portaudio ffmpeg cmake # Installe les dépendances Mac OSX
@ -48,26 +48,28 @@ export OPENAI_API_KEY=sk... # OU exécute `poetry run 01 --local` pour tout exé
poetry run 01 # Exécute le simulateur 01 Light (maintenez votre barre d'espace, parlez, relâchez)
```
<!-- > Pour une installation sous Windows, lisez [le guide dédié](https://docs.openinterpreter.com/getting-started/setup#windows). -->
<br>
# Hardware
- Le **01 Light** est une interface vocale basée sur ESP32. Les instructions de construction sont [ici]. (https://github.com/OpenInterpreter/01/tree/main/hardware/light). Une liste de ce qu'il faut acheter [ici](https://github.com/OpenInterpreter/01/blob/main/hardware/light/BOM.md).
- Il fonctionne en tandem avec le **01 Server** ([guide d'installation ci-dessous](https://github.com/OpenInterpreter/01/blob/main/README.md#01-server)) fonctionnant sur votre ordinateur domestique.
- **Mac OSX** et **Ubuntu** sont pris en charge en exécutant `poetry run 01` (**Windows** Windows est pris en charge de manière expérimentale). Cela utilise votre barre d'espace pour simuler le 01 Light..
- Le **01 Light** est une interface vocale basée sur ESP32. Les instructions de construction sont [ici]. (https://github.com/OpenInterpreter/01/tree/main/hardware/light). Une liste de ce qu'il faut acheter se trouve [ici](https://github.com/OpenInterpreter/01/blob/main/hardware/light/BOM.md).
- Il fonctionne en tandem avec le **Server 01** ([guide d'installation ci-dessous](https://github.com/OpenInterpreter/01/blob/main/README.md#01-server)) fonctionnant sur votre ordinateur.
- **Mac OSX** et **Ubuntu** sont pris en charge en exécutant `poetry run 01` (**Windows** est pris en charge de manière expérimentale). Cela utilise votre barre d'espace pour simuler le 01 Light.
- (prochainement) Le **01 Heavy** est un dispositif autonome qui exécute tout localement.
**Nous avons besoin de votre aide pour soutenir et construire plus de hardware.** Le 01 devrait pouvoir fonctionner sur tout dispositif avec entrée (microphone, clavier, etc.), sortie (haut-parleurs, écrans, moteurs, etc.) et une connexion internet (ou suffisamment de puissance de calcul pour tout exécuter localement). [Contribution Guide →](https://github.com/OpenInterpreter/01/blob/main/CONTRIBUTING.md)
**Nous avons besoin de votre aide pour soutenir et construire plus de hardware.** Le 01 devrait pouvoir fonctionner sur tout dispositif avec entrée (microphone, clavier, etc.), sortie (haut-parleurs, écrans, moteurs, etc.) et connexion internet (ou suffisamment de puissance de calcul pour tout exécuter localement). [Guide de Contribution →](https://github.com/OpenInterpreter/01/blob/main/CONTRIBUTING.md)
<br>
# Comment ça marche ?
Le 01 expose un websocket de speech-to-speech à l'adresse localhost:10001.
Le 01 expose un websocket de *speech-to-speech* à l'adresse `localhost:10001`.
Si vous diffusez des octets audio bruts vers `/` au format [Streaming LMC](https://docs.openinterpreter.com/guides/streaming-response), vous recevrez sa réponse dans le même format.
Si vous diffusez des octets audio bruts vers `/` au [format de streaming LMC](https://docs.openinterpreter.com/guides/streaming-response), vous recevrez sa réponse dans le même format.
Inspiré en partie par [Andrej Karpathy's LLM OS](https://twitter.com/karpathy/status/1723140519554105733), nous utilisons un [un modèle de langage inteprétant du code](https://github.com/OpenInterpreter/open-interpreter), et le sollicitons lorsque certains événements se produisent dans le [noyau de votre ordinateur](https://github.com/OpenInterpreter/01/blob/main/software/source/server/utils/kernel.py).
Inspiré en partie par [l'idée d'un OS LLM d'Andrej Karpathy](https://twitter.com/karpathy/status/1723140519554105733), nous utilisons un [un modèle de langage inteprétant du code](https://github.com/OpenInterpreter/open-interpreter), et le sollicitons lorsque certains événements se produisent dans le [noyau de votre ordinateur](https://github.com/OpenInterpreter/01/blob/main/software/source/server/utils/kernel.py).
Le 01 l'encapsule dans une interface vocale :
@ -75,29 +77,29 @@ Le 01 l'encapsule dans une interface vocale :
<img width="100%" alt="LMC" src="https://github.com/OpenInterpreter/01/assets/63927363/52417006-a2ca-4379-b309-ffee3509f5d4"><br><br>
# Protocols
# Protocoles
## LMC Messages
## Messages LMC
To communicate with different components of this system, we introduce [LMC Messages](https://docs.openinterpreter.com/protocols/lmc-messages) format, which extends OpenAIs messages format to include a "computer" role:
Pour communiquer avec les différents composants du système, nous introduisons le [format de messages LMC](https://docs.openinterpreter.com/protocols/lmc-messages), une extension du format de message d'OpenAI qui inclut un nouveau rôle "*computer*":
https://github.com/OpenInterpreter/01/assets/63927363/8621b075-e052-46ba-8d2e-d64b9f2a5da9
## Dynamic System Messages
## Messages Systèmes Dynamiques (Dynamic System Messages)
Les Dynamic System Messages vous permettent d'exécuter du code à l'intérieur du message système du LLM, juste avant qu'il n'apparaisse à l'IA.
Les Messages Systèmes Dynamiques vous permettent d'exécuter du code à l'intérieur du message système du LLM, juste avant qu'il n'apparaisse à l'IA.
```python
# Modifiez les paramètres suivants dans i.py
interpreter.system_message = r" The time is {{time.time()}}. " # Tout ce qui est entre doubles crochets sera exécuté comme du Python
interpreter.chat("What time is it?") # Il le saura, sans faire appel à un outil/API
interpreter.chat("What time is it?") # L'interpréteur connaitre la réponse, sans faire appel à un outil ou une API
```
# Guides
## 01 Server
Pour exécuter le serveur sur votre ordinateur de bureau et le connecter à votre 01 Light, exécutez les commandes suivantes :
Pour exécuter le serveur sur votre ordinateur et le connecter à votre 01 Light, exécutez les commandes suivantes :
```shell
brew install ngrok/ngrok/ngrok
@ -107,7 +109,7 @@ poetry run 01 --server --expose
La dernière commande affichera une URL de serveur. Vous pouvez saisir ceci dans le portail WiFi captif de votre 01 Light pour le connecter à votre serveur 01.
## Local Mode
## Mode Local
```
poetry run 01 --local
@ -117,9 +119,9 @@ Si vous souhaitez exécuter localement du speech-to-text en utilisant Whisper, v
## Personnalisation
Pour personnaliser le comportement du système, modifie le [system message, model, skills library path,](https://docs.openinterpreter.com/settings/all-settings) etc. in `i.py`. Ce fichier configure un interprète et est alimenté par Open Interpreter.
Pour personnaliser le comportement du système, modifie [`system message`, `model`, `skills library path`,](https://docs.openinterpreter.com/settings/all-settings) etc. in `i.py`. Ce fichier configure un interprète alimenté par Open Interpreter.
## Ubuntu Dependencies
## Dépendances Ubuntu
```bash
sudo apt-get install portaudio19-dev ffmpeg cmake
@ -135,7 +137,7 @@ Veuillez consulter nos [directives de contribution](CONTRIBUTING.md) pour plus d
# Roadmap
Visite [notre roadmap](/ROADMAP.md) pour voir le futur du 01.
Visitez [notre roadmap](/ROADMAP.md) pour connaitre le futur du 01.
<br>

@ -37,12 +37,16 @@ On Windows you will need to install the following:
- [Git for Windows](https://git-scm.com/download/win).
- [virtualenv](https://virtualenv.pypa.io/en/latest/installation.html) or [MiniConda](https://docs.anaconda.com/free/miniconda/miniconda-install/) to manage virtual environments.
- [Chocolatey](https://chocolatey.org/install#individual) to install the required packages.
- [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools):
- Choose [**Download Build Tools**](https://visualstudio.microsoft.com/visual-cpp-build-tools/).
- Run the downloaded file **vs_BuildTools.exe**.
- In the installer, select **Workloads** > **Desktop & Mobile** > **Desktop Development with C++**.
With these installed, you can run the following commands in a **PowerShell terminal as an administrator**:
```powershell
# Install the required packages
choco install -y ffmpeg cmake
choco install -y ffmpeg
```
## Install 01

@ -10,4 +10,4 @@
# For later
- [ ] We could have `/i` which other interpreter's hit. That behaves more like the OpenAI POST endpoint with stream=True by default (i think this is important for users to see the exchange happening in real time, streaming `event/stream` or whatever). You could imagine some kind of handshake — another interpreter → my interpreter's /i → the sender is unrecognized → computer message is sent to /, prompting AI to ask the user to have the sending interpreter send a specific code → the user tells the sending interpreter to use that specific code → the sender is recognized and added to friends-list (`computer.inetwork.friends()`) → now they can hit eachother's i endpoints freely with `computer.inetwork.friend(id).message("hey")`.
- [ ] (OS team: this will require coordination with the OI core team, so let's talk about it / I'll explain at the next meetup.) When transfering skills that require OS control, the sender can replace those skills with that command, with one input "natural language query" (?) preceeded by the skill function name or something like that. Basically so if you ask it to do something you set up as a skill, it actually asks your computer to do it. If you ask your computer to do it directly, it's more direct.
- [ ] (OS team: this will require coordination with the OI core team, so let's talk about it / I'll explain at the next meetup.) When transfering skills that require OS control, the sender can replace those skills with that command, with one input "natural language query" (?) proceeded by the skill function name or something like that. Basically so if you ask it to do something you set up as a skill, it actually asks your computer to do it. If you ask your computer to do it directly, it's more direct.

@ -1,4 +1,3 @@
_archive
__pycache__
.idea

458
software/poetry.lock generated

File diff suppressed because it is too large Load Diff

@ -33,6 +33,7 @@ dateparser = "^1.2.0"
pytimeparse = "^1.1.8"
python-crontab = "^3.0.0"
inquirer = "^3.2.4"
pyqrcode = "^1.2.1"
[build-system]
requires = ["poetry-core"]

@ -1,23 +1,18 @@
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import os
import asyncio
import threading
import os
import pyaudio
from starlette.websockets import WebSocket
from queue import Queue
from pynput import keyboard
import json
import traceback
import websockets
import queue
import pydub
import ast
from pydub import AudioSegment
from pydub.playback import play
import io
import time
import wave
import tempfile
@ -25,7 +20,10 @@ from datetime import datetime
import cv2
import base64
import platform
from interpreter import interpreter # Just for code execution. Maybe we should let people do from interpreter.computer import run?
from interpreter import (
interpreter,
) # Just for code execution. Maybe we should let people do from interpreter.computer import run?
# In the future, I guess kernel watching code should be elsewhere? Somewhere server / client agnostic?
from ..server.utils.kernel import put_kernel_messages_into_queue
from ..server.utils.get_system_info import get_system_info
@ -33,6 +31,7 @@ from ..server.utils.process_utils import kill_process_tree
from ..server.utils.logs import setup_logging
from ..server.utils.logs import logger
setup_logging()
os.environ["STT_RUNNER"] = "server"
@ -51,11 +50,11 @@ RECORDING = False # Flag to control recording state
SPACEBAR_PRESSED = False # Flag to track spacebar press state
# Camera configuration
CAMERA_ENABLED = os.getenv('CAMERA_ENABLED', False)
CAMERA_ENABLED = os.getenv("CAMERA_ENABLED", False)
if type(CAMERA_ENABLED) == str:
CAMERA_ENABLED = (CAMERA_ENABLED.lower() == "true")
CAMERA_DEVICE_INDEX = int(os.getenv('CAMERA_DEVICE_INDEX', 0))
CAMERA_WARMUP_SECONDS = float(os.getenv('CAMERA_WARMUP_SECONDS', 0))
CAMERA_ENABLED = CAMERA_ENABLED.lower() == "true"
CAMERA_DEVICE_INDEX = int(os.getenv("CAMERA_DEVICE_INDEX", 0))
CAMERA_WARMUP_SECONDS = float(os.getenv("CAMERA_WARMUP_SECONDS", 0))
# Specify OS
current_platform = get_system_info()
@ -66,6 +65,7 @@ p = pyaudio.PyAudio()
send_queue = queue.Queue()
class Device:
def __init__(self):
self.pressed_keys = set()
@ -89,23 +89,28 @@ class Device:
if ret:
temp_dir = tempfile.gettempdir()
image_path = os.path.join(temp_dir, f"01_photo_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.png")
image_path = os.path.join(
temp_dir, f"01_photo_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.png"
)
self.captured_images.append(image_path)
cv2.imwrite(image_path, frame)
logger.info(f"Camera image captured to {image_path}")
logger.info(f"You now have {len(self.captured_images)} images which will be sent along with your next audio message.")
logger.info(
f"You now have {len(self.captured_images)} images which will be sent along with your next audio message."
)
else:
logger.error(f"Error: Couldn't capture an image from camera ({camera_index})")
logger.error(
f"Error: Couldn't capture an image from camera ({camera_index})"
)
cap.release()
return image_path
def encode_image_to_base64(self, image_path):
"""Encodes an image file to a base64 string."""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
return base64.b64encode(image_file.read()).decode("utf-8")
def add_image_to_send_queue(self, image_path):
"""Encodes an image and adds an LMC message to the send queue with the image data."""
@ -114,7 +119,7 @@ class Device:
"role": "user",
"type": "image",
"format": "base64.png",
"content": base64_image
"content": base64_image,
}
send_queue.put(image_message)
# Delete the image file from the file system after sending it
@ -126,7 +131,6 @@ class Device:
self.add_image_to_send_queue(image_path)
self.captured_images.clear() # Clear the list after sending
async def play_audiosegments(self):
"""Plays them sequentially."""
while True:
@ -141,27 +145,35 @@ class Device:
except:
logger.info(traceback.format_exc())
def record_audio(self):
if os.getenv('STT_RUNNER') == "server":
if os.getenv("STT_RUNNER") == "server":
# STT will happen on the server. we're sending audio.
send_queue.put({"role": "user", "type": "audio", "format": "bytes.wav", "start": True})
elif os.getenv('STT_RUNNER') == "client":
send_queue.put(
{"role": "user", "type": "audio", "format": "bytes.wav", "start": True}
)
elif os.getenv("STT_RUNNER") == "client":
# STT will happen here, on the client. we're sending text.
send_queue.put({"role": "user", "type": "message", "start": True})
else:
raise Exception("STT_RUNNER must be set to either 'client' or 'server'.")
"""Record audio from the microphone and add it to the queue."""
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
stream = p.open(
format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
)
print("Recording started...")
global RECORDING
# Create a temporary WAV file to store the audio data
temp_dir = tempfile.gettempdir()
wav_path = os.path.join(temp_dir, f"audio_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav")
wav_file = wave.open(wav_path, 'wb')
wav_path = os.path.join(
temp_dir, f"audio_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav"
)
wav_file = wave.open(wav_path, "wb")
wav_file.setnchannels(CHANNELS)
wav_file.setsampwidth(p.get_sample_size(FORMAT))
wav_file.setframerate(RATE)
@ -178,17 +190,30 @@ class Device:
duration = wav_file.getnframes() / RATE
if duration < 0.3:
# Just pressed it. Send stop message
if os.getenv('STT_RUNNER') == "client":
if os.getenv("STT_RUNNER") == "client":
send_queue.put({"role": "user", "type": "message", "content": "stop"})
send_queue.put({"role": "user", "type": "message", "end": True})
else:
send_queue.put({"role": "user", "type": "audio", "format": "bytes.wav", "content": ""})
send_queue.put({"role": "user", "type": "audio", "format": "bytes.wav", "end": True})
send_queue.put(
{
"role": "user",
"type": "audio",
"format": "bytes.wav",
"content": "",
}
)
send_queue.put(
{
"role": "user",
"type": "audio",
"format": "bytes.wav",
"end": True,
}
)
else:
self.queue_all_captured_images()
if os.getenv('STT_RUNNER') == "client":
if os.getenv("STT_RUNNER") == "client":
# THIS DOES NOT WORK. We moved to this very cool stt_service, llm_service
# way of doing things. stt_wav is not a thing anymore. Needs work to work
@ -199,12 +224,19 @@ class Device:
send_queue.put({"role": "user", "type": "message", "end": True})
else:
# Stream audio
with open(wav_path, 'rb') as audio_file:
with open(wav_path, "rb") as audio_file:
byte_data = audio_file.read(CHUNK)
while byte_data:
send_queue.put(byte_data)
byte_data = audio_file.read(CHUNK)
send_queue.put({"role": "user", "type": "audio", "format": "bytes.wav", "end": True})
send_queue.put(
{
"role": "user",
"type": "audio",
"format": "bytes.wav",
"end": True,
}
)
if os.path.exists(wav_path):
os.remove(wav_path)
@ -227,24 +259,27 @@ class Device:
if keyboard.Key.space in self.pressed_keys:
self.toggle_recording(True)
elif {keyboard.Key.ctrl, keyboard.KeyCode.from_char('c')} <= self.pressed_keys:
elif {keyboard.Key.ctrl, keyboard.KeyCode.from_char("c")} <= self.pressed_keys:
logger.info("Ctrl+C pressed. Exiting...")
kill_process_tree()
os._exit(0)
def on_release(self, key):
"""Detect spacebar release and 'c' key press for camera, and handle key release."""
self.pressed_keys.discard(key) # Remove the released key from the key press tracking set
self.pressed_keys.discard(
key
) # Remove the released key from the key press tracking set
if key == keyboard.Key.space:
self.toggle_recording(False)
elif CAMERA_ENABLED and key == keyboard.KeyCode.from_char('c'):
elif CAMERA_ENABLED and key == keyboard.KeyCode.from_char("c"):
self.fetch_image_from_camera()
async def message_sender(self, websocket):
while True:
message = await asyncio.get_event_loop().run_in_executor(None, send_queue.get)
message = await asyncio.get_event_loop().run_in_executor(
None, send_queue.get
)
if isinstance(message, bytes):
await websocket.send(message)
else:
@ -257,7 +292,9 @@ class Device:
async def exec_ws_communication(websocket):
if CAMERA_ENABLED:
print("\nHold the spacebar to start recording. Press 'c' to capture an image from the camera. Press CTRL-C to exit.")
print(
"\nHold the spacebar to start recording. Press 'c' to capture an image from the camera. Press CTRL-C to exit."
)
else:
print("\nHold the spacebar to start recording. Press CTRL-C to exit.")
@ -280,7 +317,6 @@ class Device:
# At this point, we have our message
if message["type"] == "audio" and message["format"].startswith("bytes"):
# Convert bytes to audio file
audio_bytes = message["content"]
@ -294,13 +330,13 @@ class Device:
# 16,000 Hz frame rate
frame_rate=16000,
# mono sound
channels=1
channels=1,
)
self.audiosegments.append(audio)
# Run the code if that's the client's job
if os.getenv('CODE_RUNNER') == "client":
if os.getenv("CODE_RUNNER") == "client":
if message["type"] == "code" and "end" in message:
language = message["format"]
code = message["content"]
@ -308,7 +344,7 @@ class Device:
send_queue.put(result)
if is_win10():
logger.info('Windows 10 detected')
logger.info("Windows 10 detected")
# Workaround for Windows 10 not latching to the websocket server.
# See https://github.com/OpenInterpreter/01/issues/197
try:
@ -335,7 +371,7 @@ class Device:
asyncio.create_task(self.websocket_communication(WS_URL))
# Start watching the kernel if it's your job to do that
if os.getenv('CODE_RUNNER') == "client":
if os.getenv("CODE_RUNNER") == "client":
asyncio.create_task(put_kernel_messages_into_queue(send_queue))
asyncio.create_task(self.play_audiosegments())
@ -348,7 +384,9 @@ class Device:
print("PINDEF", pindef)
# HACK: needs passwordless sudo
process = await asyncio.create_subprocess_exec("sudo", "gpiomon", "-brf", *pindef, stdout=asyncio.subprocess.PIPE)
process = await asyncio.create_subprocess_exec(
"sudo", "gpiomon", "-brf", *pindef, stdout=asyncio.subprocess.PIPE
)
while True:
line = await process.stdout.readline()
if line:
@ -361,10 +399,12 @@ class Device:
break
else:
# Keyboard listener for spacebar press/release
listener = keyboard.Listener(on_press=self.on_press, on_release=self.on_release)
listener = keyboard.Listener(
on_press=self.on_press, on_release=self.on_release
)
listener.start()
def start(self):
if os.getenv('TEACH_MODE') != "True":
if os.getenv("TEACH_MODE") != "True":
asyncio.run(self.start_async())
p.terminate()

@ -26,4 +26,3 @@ And build and upload the firmware with a simple command:
```bash
pio run --target upload
```

@ -11,6 +11,9 @@
#include <WiFiMulti.h>
#include <WiFiClientSecure.h>
#include <WebSocketsClient.h>
#include <Preferences.h>
Preferences preferences;
String server_domain = "";
int server_port = 10001;
@ -37,6 +40,7 @@ const int kNetworkTimeout = 30 * 1000;
// Number of milliseconds to wait if no data is available before trying again
const int kNetworkDelay = 1000;
String generateHTMLWithSSIDs()
{
String html = "<!DOCTYPE html><html><head><title>WiFi Setup</title>"
@ -215,25 +219,25 @@ void startSoftAccessPoint(const char *ssid, const char *password, const IPAddres
vTaskDelay(100 / portTICK_PERIOD_MS); // Add a small delay
}
void connectToWifi(String ssid, String password)
{
void connectToWifi(String ssid, String password) {
WiFi.begin(ssid.c_str(), password.c_str());
// Wait for connection to establish
int attempts = 0;
while (WiFi.status() != WL_CONNECTED && attempts < 20)
{
while (WiFi.status() != WL_CONNECTED && attempts < 20) {
delay(1000);
Serial.print(".");
attempts++;
}
if (WiFi.status() == WL_CONNECTED)
{
if (WiFi.status() == WL_CONNECTED) {
Serial.println("Connected to Wi-Fi");
}
else
{
// Store credentials on successful connection
preferences.begin("wifi", false); // Open Preferences with my-app namespace. RW-mode is false by default.
preferences.putString("ssid", ssid); // Put your SSID.
preferences.putString("password", password); // Put your PASSWORD.
preferences.end(); // Close the Preferences.
} else {
Serial.println("Failed to connect to Wi-Fi. Check credentials.");
}
}
@ -302,6 +306,9 @@ bool connectTo01OS(String server_address)
server_domain = domain;
server_port = port;
connectionSuccess = true;
preferences.begin("network", false); // Use a different namespace for network settings
preferences.putString("server_url", server_address); // Store the server URL
preferences.end(); // Close the Preferences
}
err = http.skipResponseHeaders();
@ -356,6 +363,7 @@ bool connectTo01OS(String server_address)
Serial.print("Connection failed: ");
Serial.println(err);
}
return connectionSuccess;
}
@ -447,7 +455,10 @@ void setUpWebserver(AsyncWebServer &server, const IPAddress &localIP)
// Serial.println(password);
// Attempt to connect to the Wi-Fi network with these credentials
if(request->hasParam("password", true) && request->hasParam("ssid", true)) {
connectToWifi(ssid, password);
}
// Redirect user or send a response back
if (WiFi.status() == WL_CONNECTED) {
@ -499,7 +510,54 @@ void setUpWebserver(AsyncWebServer &server, const IPAddress &localIP)
}
});
}
void tryReconnectWiFi() {
Serial.println("Checking for stored WiFi credentials...");
preferences.begin("wifi", true); // Open Preferences with my-app namespace in ReadOnly mode
String ssid = preferences.getString("ssid", ""); // Get stored SSID, if any
String password = preferences.getString("password", ""); // Get stored password, if any
preferences.end(); // Close the Preferences
if (ssid != "") { // Check if we have stored credentials
Serial.println("Trying to connect to WiFi with stored credentials.");
WiFi.begin(ssid.c_str(), password.c_str());
int attempts = 0;
while (WiFi.status() != WL_CONNECTED && attempts < 20) {
delay(500);
Serial.print(".");
attempts++;
}
if (WiFi.status() == WL_CONNECTED) {
Serial.println("Connected to Wi-Fi using stored credentials.");
tryReconnectToServer();
return;
} else {
Serial.println("Failed to connect to Wi-Fi. Starting captive portal.");
}
} else {
Serial.println("No stored WiFi credentials. Starting captive portal.");
}
}
void tryReconnectToServer() {
preferences.begin("network", true); // Open Preferences with the "network" namespace in ReadOnly mode
String serverURL = preferences.getString("server_url", ""); // Get stored server URL, if any
preferences.end(); // Close the Preferences
if (!serverURL.isEmpty()) {
Serial.println("Trying to reconnect to server with stored URL: " + serverURL);
// Attempt to connect to the server using the stored URL
if (connectTo01OS(serverURL)) {
Serial.println("Reconnected to server using stored URL.");
} else {
Serial.println("Failed to reconnect to server. Proceeding with normal startup.");
// Proceed with your normal startup routine, possibly involving user input to get a new URL
}
} else {
Serial.println("No stored server URL. Proceeding with normal startup.");
// Normal startup routine
}
}
// ----------------------- END OF WIFI CAPTIVE PORTAL -------------------
// ----------------------- START OF PLAYBACK -------------------
@ -711,42 +769,51 @@ void audio_recording_task(void *arg) {
// ----------------------- END OF PLAYBACK -------------------
bool hasSetupWebsocket = false;
bool isServerURLStored() {
preferences.begin("network", true); // Open Preferences with the "network" namespace in ReadOnly mode
String serverURL = preferences.getString("server_url", ""); // Get stored server URL, if any
preferences.end(); // Close the Preferences
return !serverURL.isEmpty();
}
void setup() {
Serial.begin(115200); // Initialize serial communication at 115200 baud rate.
// Attempt to reconnect to WiFi using stored credentials.
// Check if WiFi is connected but the server URL isn't stored
void setup()
{
// Set the transmit buffer size for the Serial object and start it with a baud rate of 115200.
Serial.setTxBufferSize(1024);
Serial.begin(115200);
Serial.setTxBufferSize(1024); // Set the transmit buffer size for the Serial object.
// Wait for the Serial object to become available.
while (!Serial)
;
WiFi.mode(WIFI_AP_STA); // Set WiFi mode to both AP and STA.
WiFi.mode(WIFI_AP_STA);
// delay(100); // Short delay to ensure mode change takes effect
// WiFi.softAPConfig(localIP, gatewayIP, subnetMask);
// WiFi.softAP(ssid, password);
startSoftAccessPoint(ssid, password, localIP, gatewayIP);
setUpDNSServer(dnsServer, localIP);
setUpWebserver(server, localIP);
tryReconnectWiFi();
// Print a welcome message to the Serial port.
Serial.println("\n\nCaptive Test, V0.5.0 compiled " __DATE__ " " __TIME__ " by CD_FER"); //__DATE__ is provided by the platformio ide
Serial.println("\n\nCaptive Test, V0.5.0 compiled " __DATE__ " " __TIME__ " by CD_FER");
Serial.printf("%s-%d\n\r", ESP.getChipModel(), ESP.getChipRevision());
// If WiFi reconnect fails, start the soft access point for the captive portal.
if (WiFi.status() != WL_CONNECTED) {
startSoftAccessPoint(ssid, password, localIP, gatewayIP);
setUpDNSServer(dnsServer, localIP);
WiFi.scanNetworks(true); // Start scanning for networks in preparation for the captive portal.
setUpWebserver(server, localIP); // Set up the web server for the captive portal.
}
WiFi.scanNetworks(true);
server.begin(); // Begin the web server.
setUpWebserver(server, localIP);
server.begin();
Serial.print("\n");
Serial.print("Startup Time:"); // should be somewhere between 270-350 for Generic ESP32 (D0WDQ6 chip, can have a higher startup time on first boot)
Serial.print("\nStartup Time:");
Serial.println(millis());
Serial.print("\n");
M5.begin(true, false, true);
M5.dis.drawpix(0, CRGB(255, 0, 50));
M5.begin(true, false, true); // Initialize M5Stack Atom board.
M5.dis.drawpix(0, CRGB(255, 0, 50)); // Set the display color.
/* Create task for I2S */
xTaskCreate(audio_recording_task, "AUDIO", 4096, NULL, 4, NULL);
xTaskCreate(audio_recording_task, "AUDIO", 4096, NULL, 4, NULL); // Create a task for audio recording.
}
void loop()

@ -0,0 +1,13 @@
# iOS/Android Client
[WORK IN PROGRESS]
This repository contains the source code for the 01 iOS/Android app. Work in progress, we will continue to improve this application to get it working properly.
Feel free to improve this and make a pull request!
If you want to run it on your own, you will need expo.
1. Install dependencies `npm install`
2. Run the app `npx expo start`
3. Open the app in your simulator or on your device with the expo app by scanning the QR code

@ -0,0 +1,22 @@
import * as React from "react";
import { NavigationContainer } from "@react-navigation/native";
import { createNativeStackNavigator } from "@react-navigation/native-stack";
import HomeScreen from "./src/screens/HomeScreen";
import CameraScreen from "./src/screens/Camera";
import Main from "./src/screens/Main";
const Stack = createNativeStackNavigator();
function App() {
return (
<NavigationContainer>
<Stack.Navigator initialRouteName="Home">
<Stack.Screen name="Home" component={HomeScreen} />
<Stack.Screen name="Camera" component={CameraScreen} />
<Stack.Screen name="Main" component={Main} />
</Stack.Navigator>
</NavigationContainer>
);
}
export default App;

@ -0,0 +1,38 @@
{
"expo": {
"name": "01iOS",
"slug": "01iOS",
"version": "1.0.0",
"orientation": "portrait",
"icon": "./assets/icon.png",
"userInterfaceStyle": "light",
"splash": {
"image": "./assets/splash.png",
"resizeMode": "contain",
"backgroundColor": "#ffffff"
},
"assetBundlePatterns": ["**/*"],
"plugins": [
[
"expo-camera",
{
"cameraPermission": "Allow $(PRODUCT_NAME) to access your camera",
"microphonePermission": "Allow $(PRODUCT_NAME) to access your microphone",
"recordAudioAndroid": true
}
]
],
"ios": {
"supportsTablet": true
},
"android": {
"adaptiveIcon": {
"foregroundImage": "./assets/adaptive-icon.png",
"backgroundColor": "#ffffff"
}
},
"web": {
"favicon": "./assets/favicon.png"
}
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

@ -0,0 +1,6 @@
module.exports = function(api) {
api.cache(true);
return {
presets: ['babel-preset-expo'],
};
};

File diff suppressed because it is too large Load Diff

@ -0,0 +1,38 @@
{
"name": "01ios",
"version": "1.0.0",
"main": "node_modules/expo/AppEntry.js",
"scripts": {
"start": "expo start",
"android": "expo start --android",
"ios": "expo start --ios",
"web": "expo start --web",
"ts:check": "tsc"
},
"dependencies": {
"@react-navigation/native": "^6.1.14",
"@react-navigation/native-stack": "^6.9.22",
"expo": "~50.0.8",
"expo-camera": "~14.0.5",
"expo-status-bar": "~1.11.1",
"react": "18.2.0",
"react-native": "0.73.4",
"react-native-safe-area-context": "4.8.2",
"react-native-screens": "~3.29.0",
"expo-barcode-scanner": "~12.9.3",
"expo-av": "~13.10.5"
},
"devDependencies": {
"@babel/core": "^7.20.0",
"@types/react": "~18.2.45",
"typescript": "^5.1.3"
},
"ios": {
"infoPlist": {
"NSAppTransportSecurity": {
"NSAllowsArbitraryLoads": true
}
}
},
"private": true
}

@ -0,0 +1,102 @@
import React, { useState } from "react";
import { StyleSheet, Text, TouchableOpacity, View } from "react-native";
import { Camera } from "expo-camera";
import { useNavigation } from "@react-navigation/native";
import { BarCodeScanner } from "expo-barcode-scanner";
export default function CameraScreen() {
const [permission, requestPermission] = Camera.useCameraPermissions();
const [scanned, setScanned] = useState(false);
const navigation = useNavigation();
if (!permission) {
// Component is waiting for permission
return <View />;
}
if (!permission.granted) {
// No permission granted, request permission
return (
<View style={styles.container}>
<Text>No access to camera</Text>
<TouchableOpacity onPress={requestPermission} style={styles.button}>
<Text style={styles.text}>Grant Camera Access</Text>
</TouchableOpacity>
</View>
);
}
// function toggleCameraFacing() {
// setFacing((current) => (current === "back" ? "front" : "back"));
// }
const handleBarCodeScanned = ({
type,
data,
}: {
type: string;
data: string;
}) => {
setScanned(true);
console.log(
`Bar code with type ${type} and data ${data} has been scanned!`
);
alert(`Scanned URL: ${data}`);
navigation.navigate("Main", { scannedData: data });
};
return (
<View style={styles.container}>
<Camera
style={styles.camera}
facing={"back"}
onBarCodeScanned={scanned ? undefined : handleBarCodeScanned}
barCodeScannerSettings={{
barCodeTypes: [BarCodeScanner.Constants.BarCodeType.qr],
}}
>
<View style={styles.buttonContainer}>
{/* <TouchableOpacity style={styles.button} onPress={toggleCameraFacing}>
<Text style={styles.text}>Flip Camera</Text>
</TouchableOpacity> */}
{scanned && (
<TouchableOpacity
onPress={() => setScanned(false)}
style={styles.button}
>
<Text style={styles.text}>Scan Again</Text>
</TouchableOpacity>
)}
</View>
</Camera>
</View>
);
}
const styles = StyleSheet.create({
container: {
flex: 1,
flexDirection: "column",
justifyContent: "flex-end",
},
camera: {
flex: 1,
},
buttonContainer: {
backgroundColor: "transparent",
flexDirection: "row",
margin: 20,
},
button: {
flex: 0.1,
alignSelf: "flex-end",
alignItems: "center",
backgroundColor: "#000",
borderRadius: 10,
padding: 15,
},
text: {
fontSize: 18,
color: "white",
},
});

@ -0,0 +1,47 @@
import React from "react";
import { View, Text, TouchableOpacity, StyleSheet } from "react-native";
import { useNavigation } from "@react-navigation/native";
const HomeScreen = () => {
const navigation = useNavigation();
return (
<View style={styles.container}>
<View style={styles.circle} />
<TouchableOpacity
style={styles.button}
onPress={() => navigation.navigate("Camera")}
>
<Text style={styles.buttonText}>Scan Code</Text>
</TouchableOpacity>
</View>
);
};
const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: "center",
alignItems: "center",
backgroundColor: "#fff",
},
circle: {
width: 100,
height: 100,
borderRadius: 50,
backgroundColor: "black",
marginBottom: 20,
},
button: {
backgroundColor: "black",
paddingHorizontal: 20,
paddingVertical: 10,
borderRadius: 5,
},
buttonText: {
color: "white",
fontSize: 16,
},
});
export default HomeScreen;

@ -0,0 +1,171 @@
import React, { useState, useEffect } from "react";
import { View, Text, TouchableOpacity, StyleSheet } from "react-native";
import { Audio } from "expo-av";
interface MainProps {
route: {
params: {
scannedData: string;
};
};
}
const Main: React.FC<MainProps> = ({ route }) => {
const { scannedData } = route.params;
const [connectionStatus, setConnectionStatus] =
useState<string>("Connecting...");
const [ws, setWs] = useState<WebSocket | null>(null);
const [recording, setRecording] = useState<Audio.Recording | null>(null);
const [audioQueue, setAudioQueue] = useState<string[]>([]);
useEffect(() => {
const playNextAudio = async () => {
if (audioQueue.length > 0) {
const uri = audioQueue.shift();
const { sound } = await Audio.Sound.createAsync(
{ uri: uri! },
{ shouldPlay: true }
);
sound.setOnPlaybackStatusUpdate(async (status) => {
if (status.didJustFinish && !status.isLooping) {
await sound.unloadAsync();
playNextAudio();
}
});
}
};
let websocket: WebSocket;
try {
console.log("Connecting to WebSocket at " + scannedData);
websocket = new WebSocket(scannedData);
websocket.onopen = () => {
setConnectionStatus(`Connected to ${scannedData}`);
console.log("WebSocket connected");
};
websocket.onmessage = async (e) => {
console.log("Received message: ", e.data);
setAudioQueue((prevQueue) => [...prevQueue, e.data]);
if (audioQueue.length === 1) {
playNextAudio();
}
};
websocket.onerror = (error) => {
setConnectionStatus("Error connecting to WebSocket.");
console.error("WebSocket error: ", error);
};
websocket.onclose = () => {
setConnectionStatus("Disconnected.");
console.log("WebSocket disconnected");
};
setWs(websocket);
} catch (error) {
console.log(error);
setConnectionStatus("Error creating WebSocket.");
}
return () => {
if (websocket) {
websocket.close();
}
};
}, [scannedData, audioQueue]);
const startRecording = async () => {
if (recording) {
console.log("A recording is already in progress.");
return;
}
try {
console.log("Requesting permissions..");
await Audio.requestPermissionsAsync();
await Audio.setAudioModeAsync({
allowsRecordingIOS: true,
playsInSilentModeIOS: true,
});
console.log("Starting recording..");
const { recording: newRecording } = await Audio.Recording.createAsync(
Audio.RECORDING_OPTIONS_PRESET_HIGH_QUALITY
);
setRecording(newRecording);
console.log("Recording started");
} catch (err) {
console.error("Failed to start recording", err);
}
};
const stopRecording = async () => {
console.log("Stopping recording..");
setRecording(null);
if (recording) {
await recording.stopAndUnloadAsync();
const uri = recording.getURI();
console.log("Recording stopped and stored at", uri);
if (ws && uri) {
ws.send(uri);
}
}
};
return (
<View style={styles.container}>
<Text
style={[
styles.statusText,
{ color: connectionStatus.startsWith("Connected") ? "green" : "red" },
]}
>
{connectionStatus}
</Text>
<TouchableOpacity
style={styles.button}
onPressIn={startRecording}
onPressOut={stopRecording}
>
<View style={styles.circle}>
<Text style={styles.buttonText}>Record</Text>
</View>
</TouchableOpacity>
</View>
);
};
const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: "center",
alignItems: "center",
backgroundColor: "#fff",
},
circle: {
width: 100,
height: 100,
borderRadius: 50,
backgroundColor: "black",
justifyContent: "center",
alignItems: "center",
},
button: {
width: 100,
height: 100,
borderRadius: 50,
justifyContent: "center",
alignItems: "center",
},
buttonText: {
color: "white",
fontSize: 16,
},
statusText: {
marginBottom: 20,
fontSize: 16,
},
});
export default Main;

@ -0,0 +1,6 @@
{
"extends": "expo/tsconfig.base",
"compilerOptions": {
"strict": true
}
}

@ -2,9 +2,11 @@ from ..base_device import Device
device = Device()
def main(server_url):
device.server_url = server_url
device.start()
if __name__ == "__main__":
main()

@ -2,9 +2,11 @@ from ..base_device import Device
device = Device()
def main(server_url):
device.server_url = server_url
device.start()
if __name__ == "__main__":
main()

@ -2,8 +2,10 @@ from ..base_device import Device
device = Device()
def main():
device.start()
if __name__ == "__main__":
main()

@ -2,9 +2,11 @@ from ..base_device import Device
device = Device()
def main(server_url):
device.server_url = server_url
device.start()
if __name__ == "__main__":
main()

@ -1,8 +1,5 @@
import os
import sys
import pytest
from source.server.i import configure_interpreter
from unittest.mock import Mock
from interpreter import OpenInterpreter
from fastapi.testclient import TestClient
from .server import app

@ -1,11 +1,11 @@
from dotenv import load_dotenv
import os
load_dotenv() # take environment variables from .env.
import os
import glob
import time
import json
from pathlib import Path
from interpreter import OpenInterpreter
import shutil
@ -182,7 +182,6 @@ Try multiple methods before saying the task is impossible. **You can do it!**
def configure_interpreter(interpreter: OpenInterpreter):
### SYSTEM MESSAGE
interpreter.system_message = system_message
@ -205,7 +204,6 @@ def configure_interpreter(interpreter: OpenInterpreter):
"Please provide more information.",
]
# Check if required packages are installed
# THERE IS AN INCONSISTENCY HERE.
@ -259,7 +257,6 @@ def configure_interpreter(interpreter: OpenInterpreter):
time.sleep(2)
print("Attempting to start OS control anyway...\n\n")
# Should we explore other options for ^ these kinds of tags?
# Like:
@ -295,12 +292,8 @@ def configure_interpreter(interpreter: OpenInterpreter):
# if chunk.get("format") != "active_line":
# print(chunk.get("content"))
import os
from platformdirs import user_data_dir
# Directory paths
repo_skills_dir = os.path.join(os.path.dirname(__file__), "skills")
user_data_skills_dir = os.path.join(user_data_dir("01"), "skills")
@ -330,7 +323,6 @@ def configure_interpreter(interpreter: OpenInterpreter):
interpreter.computer.save_skills = True
# Initialize user's task list
interpreter.computer.run(
language="python",
@ -354,17 +346,21 @@ def configure_interpreter(interpreter: OpenInterpreter):
### MISC SETTINGS
interpreter.auto_run = True
interpreter.computer.languages = [l for l in interpreter.computer.languages if l.name.lower() in ["applescript", "shell", "zsh", "bash", "python"]]
interpreter.computer.languages = [
l
for l in interpreter.computer.languages
if l.name.lower() in ["applescript", "shell", "zsh", "bash", "python"]
]
interpreter.force_task_completion = True
# interpreter.offline = True
interpreter.id = 206 # Used to identify itself to other interpreters. This should be changed programmatically so it's unique.
### RESET conversations/user.json
app_dir = user_data_dir('01')
conversations_dir = os.path.join(app_dir, 'conversations')
app_dir = user_data_dir("01")
conversations_dir = os.path.join(app_dir, "conversations")
os.makedirs(conversations_dir, exist_ok=True)
user_json_path = os.path.join(conversations_dir, 'user.json')
with open(user_json_path, 'w') as file:
user_json_path = os.path.join(conversations_dir, "user.json")
with open(user_json_path, "w") as file:
json.dump([], file)
return interpreter

@ -1,4 +1,5 @@
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import os
@ -8,7 +9,7 @@ from pathlib import Path
### LLM SETUP
# Define the path to a llamafile
llamafile_path = Path(__file__).parent / 'model.llamafile'
llamafile_path = Path(__file__).parent / "model.llamafile"
# Check if the new llamafile exists, if not download it
if not os.path.exists(llamafile_path):

@ -1,9 +1,9 @@
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import traceback
from platformdirs import user_data_dir
import ast
import json
import queue
import os
@ -13,9 +13,7 @@ import re
from fastapi import FastAPI, Request
from fastapi.responses import PlainTextResponse
from starlette.websockets import WebSocket, WebSocketDisconnect
from pathlib import Path
import asyncio
import urllib.parse
from .utils.kernel import put_kernel_messages_into_queue
from .i import configure_interpreter
from interpreter import interpreter
@ -44,28 +42,31 @@ accumulator = Accumulator()
app = FastAPI()
app_dir = user_data_dir('01')
conversation_history_path = os.path.join(app_dir, 'conversations', 'user.json')
app_dir = user_data_dir("01")
conversation_history_path = os.path.join(app_dir, "conversations", "user.json")
SERVER_LOCAL_PORT = int(os.getenv('SERVER_LOCAL_PORT', 10001))
SERVER_LOCAL_PORT = int(os.getenv("SERVER_LOCAL_PORT", 10001))
# This is so we only say() full sentences
def is_full_sentence(text):
return text.endswith(('.', '!', '?'))
return text.endswith((".", "!", "?"))
def split_into_sentences(text):
return re.split(r'(?<=[.!?])\s+', text)
return re.split(r"(?<=[.!?])\s+", text)
# Queues
from_computer = queue.Queue() # Just for computer messages from the device. Sync queue because interpreter.run is synchronous
from_computer = (
queue.Queue()
) # Just for computer messages from the device. Sync queue because interpreter.run is synchronous
from_user = asyncio.Queue() # Just for user messages from the device.
to_device = asyncio.Queue() # For messages we send.
# Switch code executor to device if that's set
if os.getenv('CODE_RUNNER') == "device":
if os.getenv("CODE_RUNNER") == "device":
# (This should probably just loop through all languages and apply these changes instead)
class Python:
@ -79,13 +80,32 @@ if os.getenv('CODE_RUNNER') == "device":
"""Generator that yields a dictionary in LMC Format."""
# Prepare the data
message = {"role": "assistant", "type": "code", "format": "python", "content": code}
message = {
"role": "assistant",
"type": "code",
"format": "python",
"content": code,
}
# Unless it was just sent to the device, send it wrapped in flags
if not (interpreter.messages and interpreter.messages[-1] == message):
to_device.put({"role": "assistant", "type": "code", "format": "python", "start": True})
to_device.put(
{
"role": "assistant",
"type": "code",
"format": "python",
"start": True,
}
)
to_device.put(message)
to_device.put({"role": "assistant", "type": "code", "format": "python", "end": True})
to_device.put(
{
"role": "assistant",
"type": "code",
"format": "python",
"end": True,
}
)
# Stream the response
logger.info("Waiting for the device to respond...")
@ -109,10 +129,12 @@ if os.getenv('CODE_RUNNER') == "device":
# Configure interpreter
interpreter = configure_interpreter(interpreter)
@app.get("/ping")
async def ping():
return PlainTextResponse("pong")
@app.websocket("/")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
@ -145,19 +167,21 @@ async def receive_messages(websocket: WebSocket):
except Exception as e:
print(str(e))
return
if 'text' in data:
if "text" in data:
try:
data = json.loads(data['text'])
data = json.loads(data["text"])
if data["role"] == "computer":
from_computer.put(data) # To be handled by interpreter.computer.run
from_computer.put(
data
) # To be handled by interpreter.computer.run
elif data["role"] == "user":
await from_user.put(data)
else:
raise("Unknown role:", data)
raise ("Unknown role:", data)
except json.JSONDecodeError:
pass # data is not JSON, leave it as is
elif 'bytes' in data:
data = data['bytes'] # binary data
elif "bytes" in data:
data = data["bytes"] # binary data
await from_user.put(data)
except WebSocketDisconnect as e:
if e.code == 1000:
@ -170,7 +194,7 @@ async def receive_messages(websocket: WebSocket):
async def send_messages(websocket: WebSocket):
while True:
message = await to_device.get()
#print(f"Sending to the device: {type(message)} {str(message)[:100]}")
# print(f"Sending to the device: {type(message)} {str(message)[:100]}")
try:
if isinstance(message, dict):
@ -184,8 +208,8 @@ async def send_messages(websocket: WebSocket):
await to_device.put(message)
raise
async def listener():
async def listener():
while True:
try:
while True:
@ -197,8 +221,6 @@ async def listener():
break
await asyncio.sleep(1)
message = accumulator.accumulate(chunk)
if message == None:
# Will be None until we have a full message ready
@ -209,8 +231,11 @@ async def listener():
# At this point, we have our message
if message["type"] == "audio" and message["format"].startswith("bytes"):
if "content" not in message or message["content"] == None or message["content"] == "": # If it was nothing / silence / empty
if (
"content" not in message
or message["content"] == None
or message["content"] == ""
): # If it was nothing / silence / empty
continue
# Convert bytes to audio file
@ -222,6 +247,7 @@ async def listener():
if False:
os.system(f"open {audio_file_path}")
import time
time.sleep(15)
text = stt(audio_file_path)
@ -239,21 +265,21 @@ async def listener():
continue
# Load, append, and save conversation history
with open(conversation_history_path, 'r') as file:
with open(conversation_history_path, "r") as file:
messages = json.load(file)
messages.append(message)
with open(conversation_history_path, 'w') as file:
with open(conversation_history_path, "w") as file:
json.dump(messages, file, indent=4)
accumulated_text = ""
if any([m["type"] == "image" for m in messages]) and interpreter.llm.model.startswith("gpt-"):
if any(
[m["type"] == "image" for m in messages]
) and interpreter.llm.model.startswith("gpt-"):
interpreter.llm.model = "gpt-4-vision-preview"
interpreter.llm.supports_vision = True
for chunk in interpreter.chat(messages, stream=True, display=True):
if any([m["type"] == "image" for m in interpreter.messages]):
interpreter.llm.model = "gpt-4-vision-preview"
@ -264,16 +290,22 @@ async def listener():
# Yield to the event loop, so you actually send it out
await asyncio.sleep(0.01)
if os.getenv('TTS_RUNNER') == "server":
if os.getenv("TTS_RUNNER") == "server":
# Speak full sentences out loud
if chunk["role"] == "assistant" and "content" in chunk and chunk["type"] == "message":
if (
chunk["role"] == "assistant"
and "content" in chunk
and chunk["type"] == "message"
):
accumulated_text += chunk["content"]
sentences = split_into_sentences(accumulated_text)
# If we're going to speak, say we're going to stop sending text.
# This should be fixed probably, we should be able to do both in parallel, or only one.
if any(is_full_sentence(sentence) for sentence in sentences):
await to_device.put({"role": "assistant", "type": "message", "end": True})
await to_device.put(
{"role": "assistant", "type": "message", "end": True}
)
if is_full_sentence(sentences[-1]):
for sentence in sentences:
@ -287,32 +319,36 @@ async def listener():
# If we're going to speak, say we're going to stop sending text.
# This should be fixed probably, we should be able to do both in parallel, or only one.
if any(is_full_sentence(sentence) for sentence in sentences):
await to_device.put({"role": "assistant", "type": "message", "start": True})
await to_device.put(
{"role": "assistant", "type": "message", "start": True}
)
# If we have a new message, save our progress and go back to the top
if not from_user.empty():
# Check if it's just an end flag. We ignore those.
temp_message = await from_user.get()
if type(temp_message) is dict and temp_message.get("role") == "user" and temp_message.get("end"):
if (
type(temp_message) is dict
and temp_message.get("role") == "user"
and temp_message.get("end")
):
# Yup. False alarm.
continue
else:
# Whoops! Put that back
await from_user.put(temp_message)
with open(conversation_history_path, 'w') as file:
with open(conversation_history_path, "w") as file:
json.dump(interpreter.messages, file, indent=4)
# TODO: is triggering seemingly randomly
#logger.info("New user message recieved. Breaking.")
#break
# logger.info("New user message recieved. Breaking.")
# break
# Also check if there's any new computer messages
if not from_computer.empty():
with open(conversation_history_path, 'w') as file:
with open(conversation_history_path, "w") as file:
json.dump(interpreter.messages, file, indent=4)
logger.info("New computer message recieved. Breaking.")
@ -320,6 +356,7 @@ async def listener():
except:
traceback.print_exc()
async def stream_tts_to_device(sentence):
force_task_completion_responses = [
"the task is done",
@ -332,8 +369,8 @@ async def stream_tts_to_device(sentence):
for chunk in stream_tts(sentence):
await to_device.put(chunk)
def stream_tts(sentence):
def stream_tts(sentence):
audio_file = tts(sentence)
with open(audio_file, "rb") as f:
@ -346,68 +383,88 @@ def stream_tts(sentence):
# Stream the audio
yield {"role": "assistant", "type": "audio", "format": file_type, "start": True}
for i in range(0, len(audio_bytes), chunk_size):
chunk = audio_bytes[i:i+chunk_size]
chunk = audio_bytes[i : i + chunk_size]
yield chunk
yield {"role": "assistant", "type": "audio", "format": file_type, "end": True}
from uvicorn import Config, Server
import os
import platform
from importlib import import_module
# these will be overwritten
HOST = ''
HOST = ""
PORT = 0
@app.on_event("startup")
async def startup_event():
server_url = f"{HOST}:{PORT}"
print("")
print_markdown(f"\n*Ready.*\n")
print_markdown("\n*Ready.*\n")
print("")
@app.on_event("shutdown")
async def shutdown_event():
print_markdown("*Server is shutting down*")
async def main(server_host, server_port, llm_service, model, llm_supports_vision, llm_supports_functions, context_window, max_tokens, temperature, tts_service, stt_service):
async def main(
server_host,
server_port,
llm_service,
model,
llm_supports_vision,
llm_supports_functions,
context_window,
max_tokens,
temperature,
tts_service,
stt_service,
):
global HOST
global PORT
PORT = server_port
HOST = server_host
# Setup services
application_directory = user_data_dir('01')
services_directory = os.path.join(application_directory, 'services')
application_directory = user_data_dir("01")
services_directory = os.path.join(application_directory, "services")
service_dict = {'llm': llm_service, 'tts': tts_service, 'stt': stt_service}
service_dict = {"llm": llm_service, "tts": tts_service, "stt": stt_service}
# Create a temp file with the session number
session_file_path = os.path.join(user_data_dir('01'), '01-session.txt')
with open(session_file_path, 'w') as session_file:
session_file_path = os.path.join(user_data_dir("01"), "01-session.txt")
with open(session_file_path, "w") as session_file:
session_id = int(datetime.datetime.now().timestamp() * 1000)
session_file.write(str(session_id))
for service in service_dict:
service_directory = os.path.join(services_directory, service, service_dict[service])
service_directory = os.path.join(
services_directory, service, service_dict[service]
)
# This is the folder they can mess around in
config = {"service_directory": service_directory}
if service == "llm":
config.update({
config.update(
{
"interpreter": interpreter,
"model": model,
"llm_supports_vision": llm_supports_vision,
"llm_supports_functions": llm_supports_functions,
"context_window": context_window,
"max_tokens": max_tokens,
"temperature": temperature
})
"temperature": temperature,
}
)
module = import_module(f'.server.services.{service}.{service_dict[service]}.{service}', package='source')
module = import_module(
f".server.services.{service}.{service_dict[service]}.{service}",
package="source",
)
ServiceClass = getattr(module, service.capitalize())
service_instance = ServiceClass(config)
@ -422,10 +479,11 @@ async def main(server_host, server_port, llm_service, model, llm_supports_vision
if True: # in the future, code can run on device. for now, just server.
asyncio.create_task(put_kernel_messages_into_queue(from_computer))
config = Config(app, host=server_host, port=int(server_port), lifespan='on')
config = Config(app, host=server_host, port=int(server_port), lifespan="on")
server = Server(config)
await server.serve()
# Run the FastAPI app
if __name__ == "__main__":
asyncio.run(main())

@ -1,6 +1,5 @@
class Llm:
def __init__(self, config):
# Litellm is used by OI by default, so we just modify OI
interpreter = config["interpreter"]
@ -10,6 +9,3 @@ class Llm:
setattr(interpreter, key.replace("-", "_"), value)
self.llm = interpreter.llm.completions

@ -3,29 +3,54 @@ import subprocess
import requests
import json
class Llm:
def __init__(self, config):
self.install(config["service_directory"])
def install(self, service_directory):
LLM_FOLDER_PATH = service_directory
self.llm_directory = os.path.join(LLM_FOLDER_PATH, 'llm')
self.llm_directory = os.path.join(LLM_FOLDER_PATH, "llm")
if not os.path.isdir(self.llm_directory): # Check if the LLM directory exists
os.makedirs(LLM_FOLDER_PATH, exist_ok=True)
# Install WasmEdge
subprocess.run(['curl', '-sSf', 'https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install.sh', '|', 'bash', '-s', '--', '--plugin', 'wasi_nn-ggml'])
subprocess.run(
[
"curl",
"-sSf",
"https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install.sh",
"|",
"bash",
"-s",
"--",
"--plugin",
"wasi_nn-ggml",
]
)
# Download the Qwen1.5-0.5B-Chat model GGUF file
MODEL_URL = "https://huggingface.co/second-state/Qwen1.5-0.5B-Chat-GGUF/resolve/main/Qwen1.5-0.5B-Chat-Q5_K_M.gguf"
subprocess.run(['curl', '-LO', MODEL_URL], cwd=self.llm_directory)
subprocess.run(["curl", "-LO", MODEL_URL], cwd=self.llm_directory)
# Download the llama-api-server.wasm app
APP_URL = "https://github.com/LlamaEdge/LlamaEdge/releases/latest/download/llama-api-server.wasm"
subprocess.run(['curl', '-LO', APP_URL], cwd=self.llm_directory)
subprocess.run(["curl", "-LO", APP_URL], cwd=self.llm_directory)
# Run the API server
subprocess.run(['wasmedge', '--dir', '.:.', '--nn-preload', 'default:GGML:AUTO:Qwen1.5-0.5B-Chat-Q5_K_M.gguf', 'llama-api-server.wasm', '-p', 'llama-2-chat'], cwd=self.llm_directory)
subprocess.run(
[
"wasmedge",
"--dir",
".:.",
"--nn-preload",
"default:GGML:AUTO:Qwen1.5-0.5B-Chat-Q5_K_M.gguf",
"llama-api-server.wasm",
"-p",
"llama-2-chat",
],
cwd=self.llm_directory,
)
print("LLM setup completed.")
else:
@ -33,17 +58,11 @@ class Llm:
def llm(self, messages):
url = "http://localhost:8080/v1/chat/completions"
headers = {
'accept': 'application/json',
'Content-Type': 'application/json'
}
data = {
"messages": messages,
"model": "llama-2-chat"
}
with requests.post(url, headers=headers, data=json.dumps(data), stream=True) as response:
headers = {"accept": "application/json", "Content-Type": "application/json"}
data = {"messages": messages, "model": "llama-2-chat"}
with requests.post(
url, headers=headers, data=json.dumps(data), stream=True
) as response:
for line in response.iter_lines():
if line:
yield json.loads(line)

@ -10,9 +10,6 @@ import shutil
import ffmpeg
import subprocess
import os
import subprocess
import platform
import urllib.request
@ -26,7 +23,6 @@ class Stt:
def install(service_dir):
### INSTALL
WHISPER_RUST_PATH = os.path.join(service_dir, "whisper-rust")
@ -41,29 +37,38 @@ def install(service_dir):
os.chdir(WHISPER_RUST_PATH)
# Check if whisper-rust executable exists before attempting to build
if not os.path.isfile(os.path.join(WHISPER_RUST_PATH, "target/release/whisper-rust")):
if not os.path.isfile(
os.path.join(WHISPER_RUST_PATH, "target/release/whisper-rust")
):
# Check if Rust is installed. Needed to build whisper executable
rustc_path = shutil.which("rustc")
if rustc_path is None:
print("Rust is not installed or is not in system PATH. Please install Rust before proceeding.")
print(
"Rust is not installed or is not in system PATH. Please install Rust before proceeding."
)
exit(1)
# Build Whisper Rust executable if not found
subprocess.run(['cargo', 'build', '--release'], check=True)
subprocess.run(["cargo", "build", "--release"], check=True)
else:
print("Whisper Rust executable already exists. Skipping build.")
WHISPER_MODEL_PATH = os.path.join(service_dir, "model")
WHISPER_MODEL_NAME = os.getenv('WHISPER_MODEL_NAME', 'ggml-tiny.en.bin')
WHISPER_MODEL_URL = os.getenv('WHISPER_MODEL_URL', 'https://huggingface.co/ggerganov/whisper.cpp/resolve/main/')
WHISPER_MODEL_NAME = os.getenv("WHISPER_MODEL_NAME", "ggml-tiny.en.bin")
WHISPER_MODEL_URL = os.getenv(
"WHISPER_MODEL_URL",
"https://huggingface.co/ggerganov/whisper.cpp/resolve/main/",
)
if not os.path.isfile(os.path.join(WHISPER_MODEL_PATH, WHISPER_MODEL_NAME)):
os.makedirs(WHISPER_MODEL_PATH, exist_ok=True)
urllib.request.urlretrieve(f"{WHISPER_MODEL_URL}{WHISPER_MODEL_NAME}",
os.path.join(WHISPER_MODEL_PATH, WHISPER_MODEL_NAME))
urllib.request.urlretrieve(
f"{WHISPER_MODEL_URL}{WHISPER_MODEL_NAME}",
os.path.join(WHISPER_MODEL_PATH, WHISPER_MODEL_NAME),
)
else:
print("Whisper model already exists. Skipping download.")
@ -85,25 +90,31 @@ def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str:
# Create a temporary file with the appropriate extension
input_ext = convert_mime_type_to_format(mime_type)
input_path = os.path.join(temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}")
with open(input_path, 'wb') as f:
input_path = os.path.join(
temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}"
)
with open(input_path, "wb") as f:
f.write(audio)
# Check if the input file exists
assert os.path.exists(input_path), f"Input file does not exist: {input_path}"
# Export to wav
output_path = os.path.join(temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav")
output_path = os.path.join(
temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav"
)
print(mime_type, input_path, output_path)
if mime_type == "audio/raw":
ffmpeg.input(
input_path,
f='s16le',
ar='16000',
f="s16le",
ar="16000",
ac=1,
).output(output_path, loglevel='panic').run()
).output(output_path, loglevel="panic").run()
else:
ffmpeg.input(input_path).output(output_path, acodec='pcm_s16le', ac=1, ar='16k', loglevel='panic').run()
ffmpeg.input(input_path).output(
output_path, acodec="pcm_s16le", ac=1, ar="16k", loglevel="panic"
).run()
try:
yield output_path
@ -113,28 +124,40 @@ def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str:
def run_command(command):
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
result = subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
return result.stdout, result.stderr
def get_transcription_file(service_directory, wav_file_path: str):
local_path = os.path.join(service_directory, 'model')
whisper_rust_path = os.path.join(service_directory, 'whisper-rust', 'target', 'release')
model_name = os.getenv('WHISPER_MODEL_NAME', 'ggml-tiny.en.bin')
output, _ = run_command([
os.path.join(whisper_rust_path, 'whisper-rust'),
'--model-path', os.path.join(local_path, model_name),
'--file-path', wav_file_path
])
local_path = os.path.join(service_directory, "model")
whisper_rust_path = os.path.join(
service_directory, "whisper-rust", "target", "release"
)
model_name = os.getenv("WHISPER_MODEL_NAME", "ggml-tiny.en.bin")
output, _ = run_command(
[
os.path.join(whisper_rust_path, "whisper-rust"),
"--model-path",
os.path.join(local_path, model_name),
"--file-path",
wav_file_path,
]
)
return output
def stt_wav(service_directory, wav_file_path: str):
temp_dir = tempfile.gettempdir()
output_path = os.path.join(temp_dir, f"output_stt_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav")
ffmpeg.input(wav_file_path).output(output_path, acodec='pcm_s16le', ac=1, ar='16k').run()
output_path = os.path.join(
temp_dir, f"output_stt_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav"
)
ffmpeg.input(wav_file_path).output(
output_path, acodec="pcm_s16le", ac=1, ar="16k"
).run()
try:
transcript = get_transcription_file(service_directory, output_path)
finally:

@ -6,7 +6,6 @@ class Stt:
return stt(audio_file_path)
from datetime import datetime
import os
import contextlib
@ -19,6 +18,7 @@ from openai import OpenAI
client = OpenAI()
def convert_mime_type_to_format(mime_type: str) -> str:
if mime_type == "audio/x-wav" or mime_type == "audio/wav":
return "wav"
@ -29,30 +29,37 @@ def convert_mime_type_to_format(mime_type: str) -> str:
return mime_type
@contextlib.contextmanager
def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str:
temp_dir = tempfile.gettempdir()
# Create a temporary file with the appropriate extension
input_ext = convert_mime_type_to_format(mime_type)
input_path = os.path.join(temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}")
with open(input_path, 'wb') as f:
input_path = os.path.join(
temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}"
)
with open(input_path, "wb") as f:
f.write(audio)
# Check if the input file exists
assert os.path.exists(input_path), f"Input file does not exist: {input_path}"
# Export to wav
output_path = os.path.join(temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav")
output_path = os.path.join(
temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav"
)
if mime_type == "audio/raw":
ffmpeg.input(
input_path,
f='s16le',
ar='16000',
f="s16le",
ar="16000",
ac=1,
).output(output_path, loglevel='panic').run()
).output(output_path, loglevel="panic").run()
else:
ffmpeg.input(input_path).output(output_path, acodec='pcm_s16le', ac=1, ar='16k', loglevel='panic').run()
ffmpeg.input(input_path).output(
output_path, acodec="pcm_s16le", ac=1, ar="16k", loglevel="panic"
).run()
try:
yield output_path
@ -60,39 +67,49 @@ def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str:
os.remove(input_path)
os.remove(output_path)
def run_command(command):
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
result = subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
return result.stdout, result.stderr
def get_transcription_file(wav_file_path: str):
local_path = os.path.join(os.path.dirname(__file__), 'local_service')
whisper_rust_path = os.path.join(os.path.dirname(__file__), 'whisper-rust', 'target', 'release')
model_name = os.getenv('WHISPER_MODEL_NAME', 'ggml-tiny.en.bin')
output, error = run_command([
os.path.join(whisper_rust_path, 'whisper-rust'),
'--model-path', os.path.join(local_path, model_name),
'--file-path', wav_file_path
])
def get_transcription_file(wav_file_path: str):
local_path = os.path.join(os.path.dirname(__file__), "local_service")
whisper_rust_path = os.path.join(
os.path.dirname(__file__), "whisper-rust", "target", "release"
)
model_name = os.getenv("WHISPER_MODEL_NAME", "ggml-tiny.en.bin")
output, error = run_command(
[
os.path.join(whisper_rust_path, "whisper-rust"),
"--model-path",
os.path.join(local_path, model_name),
"--file-path",
wav_file_path,
]
)
return output
def get_transcription_bytes(audio_bytes: bytearray, mime_type):
with export_audio_to_wav_ffmpeg(audio_bytes, mime_type) as wav_file_path:
return get_transcription_file(wav_file_path)
def stt_bytes(audio_bytes: bytearray, mime_type="audio/wav"):
with export_audio_to_wav_ffmpeg(audio_bytes, mime_type) as wav_file_path:
return stt_wav(wav_file_path)
def stt_wav(wav_file_path: str):
def stt_wav(wav_file_path: str):
audio_file = open(wav_file_path, "rb")
try:
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
model="whisper-1", file=audio_file, response_format="text"
)
except openai.BadRequestError as e:
print(f"openai.BadRequestError: {e}")
@ -100,10 +117,13 @@ def stt_wav(wav_file_path: str):
return transcript
def stt(input_data, mime_type="audio/wav"):
if isinstance(input_data, str):
return stt_wav(input_data)
elif isinstance(input_data, bytearray):
return stt_bytes(input_data, mime_type)
else:
raise ValueError("Input data should be either a path to a wav file (str) or audio bytes (bytearray)")
raise ValueError(
"Input data should be either a path to a wav file (str) or audio bytes (bytearray)"
)

@ -2,23 +2,25 @@ import ffmpeg
import tempfile
from openai import OpenAI
import os
import subprocess
import tempfile
from source.server.utils.logs import logger
from source.server.utils.logs import setup_logging
setup_logging()
# If this TTS service is used, the OPENAI_API_KEY environment variable must be set
if not os.getenv('OPENAI_API_KEY'):
if not os.getenv("OPENAI_API_KEY"):
logger.error("")
logger.error(f"OpenAI API key not found. Please set the OPENAI_API_KEY environment variable, or run 01 with the --local option.")
logger.error(
"OpenAI API key not found. Please set the OPENAI_API_KEY environment variable, or run 01 with the --local option."
)
logger.error("Aborting...")
logger.error("")
os._exit(1)
client = OpenAI()
class Tts:
def __init__(self, config):
pass
@ -26,17 +28,17 @@ class Tts:
def tts(self, text):
response = client.audio.speech.create(
model="tts-1",
voice=os.getenv('OPENAI_VOICE_NAME', 'alloy'),
voice=os.getenv("OPENAI_VOICE_NAME", "alloy"),
input=text,
response_format="opus"
response_format="opus",
)
with tempfile.NamedTemporaryFile(suffix=".opus", delete=False) as temp_file:
response.stream_to_file(temp_file.name)
# TODO: hack to format audio correctly for device
outfile = tempfile.gettempdir() + "/" + "raw.dat"
ffmpeg.input(temp_file.name).output(outfile, f="s16le", ar="16000", ac="1", loglevel='panic').run()
ffmpeg.input(temp_file.name).output(
outfile, f="s16le", ar="16000", ac="1", loglevel="panic"
).run()
return outfile

@ -13,26 +13,40 @@ class Tts:
self.install(config["service_directory"])
def tts(self, text):
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
output_file = temp_file.name
piper_dir = self.piper_directory
subprocess.run([
os.path.join(piper_dir, 'piper'),
'--model', os.path.join(piper_dir, os.getenv('PIPER_VOICE_NAME', 'en_US-lessac-medium.onnx')),
'--output_file', output_file
], input=text, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
subprocess.run(
[
os.path.join(piper_dir, "piper"),
"--model",
os.path.join(
piper_dir,
os.getenv("PIPER_VOICE_NAME", "en_US-lessac-medium.onnx"),
),
"--output_file",
output_file,
],
input=text,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
# TODO: hack to format audio correctly for device
outfile = tempfile.gettempdir() + "/" + "raw.dat"
ffmpeg.input(temp_file.name).output(outfile, f="s16le", ar="16000", ac="1", loglevel='panic').run()
ffmpeg.input(temp_file.name).output(
outfile, f="s16le", ar="16000", ac="1", loglevel="panic"
).run()
return outfile
def install(self, service_directory):
PIPER_FOLDER_PATH = service_directory
self.piper_directory = os.path.join(PIPER_FOLDER_PATH, 'piper')
if not os.path.isdir(self.piper_directory): # Check if the Piper directory exists
self.piper_directory = os.path.join(PIPER_FOLDER_PATH, "piper")
if not os.path.isdir(
self.piper_directory
): # Check if the Piper directory exists
os.makedirs(PIPER_FOLDER_PATH, exist_ok=True)
# Determine OS and architecture
@ -60,51 +74,91 @@ class Tts:
asset_url = f"{PIPER_URL}{PIPER_ASSETNAME}"
if OS == "windows":
asset_url = asset_url.replace(".tar.gz", ".zip")
# Download and extract Piper
urllib.request.urlretrieve(asset_url, os.path.join(PIPER_FOLDER_PATH, PIPER_ASSETNAME))
urllib.request.urlretrieve(
asset_url, os.path.join(PIPER_FOLDER_PATH, PIPER_ASSETNAME)
)
# Extract the downloaded file
if OS == "windows":
import zipfile
with zipfile.ZipFile(os.path.join(PIPER_FOLDER_PATH, PIPER_ASSETNAME), 'r') as zip_ref:
with zipfile.ZipFile(
os.path.join(PIPER_FOLDER_PATH, PIPER_ASSETNAME), "r"
) as zip_ref:
zip_ref.extractall(path=PIPER_FOLDER_PATH)
else:
with tarfile.open(os.path.join(PIPER_FOLDER_PATH, PIPER_ASSETNAME), 'r:gz') as tar:
with tarfile.open(
os.path.join(PIPER_FOLDER_PATH, PIPER_ASSETNAME), "r:gz"
) as tar:
tar.extractall(path=PIPER_FOLDER_PATH)
PIPER_VOICE_URL = os.getenv('PIPER_VOICE_URL',
'https://huggingface.co/rhasspy/piper-voices/resolve/main/en/en_US/lessac/medium/')
PIPER_VOICE_NAME = os.getenv('PIPER_VOICE_NAME', 'en_US-lessac-medium.onnx')
PIPER_VOICE_URL = os.getenv(
"PIPER_VOICE_URL",
"https://huggingface.co/rhasspy/piper-voices/resolve/main/en/en_US/lessac/medium/",
)
PIPER_VOICE_NAME = os.getenv("PIPER_VOICE_NAME", "en_US-lessac-medium.onnx")
# Download voice model and its json file
urllib.request.urlretrieve(f"{PIPER_VOICE_URL}{PIPER_VOICE_NAME}",
os.path.join(self.piper_directory, PIPER_VOICE_NAME))
urllib.request.urlretrieve(f"{PIPER_VOICE_URL}{PIPER_VOICE_NAME}.json",
os.path.join(self.piper_directory, f"{PIPER_VOICE_NAME}.json"))
urllib.request.urlretrieve(
f"{PIPER_VOICE_URL}{PIPER_VOICE_NAME}",
os.path.join(self.piper_directory, PIPER_VOICE_NAME),
)
urllib.request.urlretrieve(
f"{PIPER_VOICE_URL}{PIPER_VOICE_NAME}.json",
os.path.join(self.piper_directory, f"{PIPER_VOICE_NAME}.json"),
)
# Additional setup for macOS
if OS == "macos":
if ARCH == "x64":
subprocess.run(['softwareupdate', '--install-rosetta', '--agree-to-license'])
subprocess.run(
["softwareupdate", "--install-rosetta", "--agree-to-license"]
)
PIPER_PHONEMIZE_ASSETNAME = f"piper-phonemize_{OS}_{ARCH}.tar.gz"
PIPER_PHONEMIZE_URL = "https://github.com/rhasspy/piper-phonemize/releases/latest/download/"
urllib.request.urlretrieve(f"{PIPER_PHONEMIZE_URL}{PIPER_PHONEMIZE_ASSETNAME}",
os.path.join(self.piper_directory, PIPER_PHONEMIZE_ASSETNAME))
with tarfile.open(os.path.join(self.piper_directory, PIPER_PHONEMIZE_ASSETNAME), 'r:gz') as tar:
urllib.request.urlretrieve(
f"{PIPER_PHONEMIZE_URL}{PIPER_PHONEMIZE_ASSETNAME}",
os.path.join(self.piper_directory, PIPER_PHONEMIZE_ASSETNAME),
)
with tarfile.open(
os.path.join(self.piper_directory, PIPER_PHONEMIZE_ASSETNAME),
"r:gz",
) as tar:
tar.extractall(path=self.piper_directory)
PIPER_DIR = self.piper_directory
subprocess.run(['install_name_tool', '-change', '@rpath/libespeak-ng.1.dylib',
f"{PIPER_DIR}/piper-phonemize/lib/libespeak-ng.1.dylib", f"{PIPER_DIR}/piper"])
subprocess.run(['install_name_tool', '-change', '@rpath/libonnxruntime.1.14.1.dylib',
f"{PIPER_DIR}/piper-phonemize/lib/libonnxruntime.1.14.1.dylib", f"{PIPER_DIR}/piper"])
subprocess.run(['install_name_tool', '-change', '@rpath/libpiper_phonemize.1.dylib',
f"{PIPER_DIR}/piper-phonemize/lib/libpiper_phonemize.1.dylib", f"{PIPER_DIR}/piper"])
subprocess.run(
[
"install_name_tool",
"-change",
"@rpath/libespeak-ng.1.dylib",
f"{PIPER_DIR}/piper-phonemize/lib/libespeak-ng.1.dylib",
f"{PIPER_DIR}/piper",
]
)
subprocess.run(
[
"install_name_tool",
"-change",
"@rpath/libonnxruntime.1.14.1.dylib",
f"{PIPER_DIR}/piper-phonemize/lib/libonnxruntime.1.14.1.dylib",
f"{PIPER_DIR}/piper",
]
)
subprocess.run(
[
"install_name_tool",
"-change",
"@rpath/libpiper_phonemize.1.dylib",
f"{PIPER_DIR}/piper-phonemize/lib/libpiper_phonemize.1.dylib",
f"{PIPER_DIR}/piper",
]
)
print("Piper setup completed.")
else:

@ -3,9 +3,9 @@ from datetime import datetime
from pytimeparse import parse
from crontab import CronTab
from uuid import uuid4
from datetime import datetime
from platformdirs import user_data_dir
def schedule(message="", start=None, interval=None) -> None:
"""
Schedules a task at a particular time, or at a particular interval
@ -17,19 +17,18 @@ def schedule(message="", start=None, interval=None) -> None:
raise ValueError("Either start time or interval must be specified.")
# Read the temp file to see what the current session is
session_file_path = os.path.join(user_data_dir('01'), '01-session.txt')
session_file_path = os.path.join(user_data_dir("01"), "01-session.txt")
with open(session_file_path, 'r') as session_file:
with open(session_file_path, "r") as session_file:
file_session_value = session_file.read().strip()
prefixed_message = "AUTOMATED MESSAGE FROM SCHEDULER: " + message
# Escape the message and the json, cron is funky with quotes
escaped_question = prefixed_message.replace('"', '\\"')
json_data = f"{{\\\"text\\\": \\\"{escaped_question}\\\"}}"
json_data = f'{{\\"text\\": \\"{escaped_question}\\"}}'
command = f'''bash -c 'if [ "$(cat "{session_file_path}")" == "{file_session_value}" ]; then /usr/bin/curl -X POST -H "Content-Type: application/json" -d "{json_data}" http://localhost:10001/; fi' '''
command = f"""bash -c 'if [ "$(cat "{session_file_path}")" == "{file_session_value}" ]; then /usr/bin/curl -X POST -H "Content-Type: application/json" -d "{json_data}" http://localhost:10001/; fi' """
cron = CronTab(user=True)
job = cron.new(command=command)
@ -63,4 +62,3 @@ def schedule(message="", start=None, interval=None) -> None:
print(f"Task scheduled every {days} day(s)")
cron.write()

@ -104,7 +104,7 @@ When the user tells you about a set of tasks, you should intelligently order tas
After starting a task, you should check in with the user around the estimated completion time to see if the task is completed. Use the `schedule(datetime, message)` function, which has already been imported.
To do this, schedule a reminder based on estimated completion time using the function `schedule(datetime_object, "Your message here.")`, WHICH HAS ALREADY BEEN IMPORTED. YOU DON'T NEED TO IMPORT THE `schedule` FUNCTION. IT IS AVALIABLE. You'll recieve the message at `datetime_object`.
To do this, schedule a reminder based on estimated completion time using the function `schedule(datetime_object, "Your message here.")`, WHICH HAS ALREADY BEEN IMPORTED. YOU DON'T NEED TO IMPORT THE `schedule` FUNCTION. IT IS AVALIABLE. You'll receive the message at `datetime_object`.
You guide the user through the list one task at a time, convincing them to move forward, giving a pep talk if need be. Your job is essentially to answer "what should I (the user) be doing right now?" for every moment of the day.
@ -237,4 +237,6 @@ For example:
ALWAYS REMEMBER: You are running on a device called the O1, where the interface is entirely speech-based. Make your responses to the user **VERY short.**
""".strip().replace("OI_SKILLS_DIR", os.path.join(os.path.dirname(__file__), "skills"))
""".strip().replace(
"OI_SKILLS_DIR", os.path.join(os.path.dirname(__file__), "skills")
)

@ -131,4 +131,6 @@ print(output)
Remember: You can run Python code outside a function only to run a Python function; all other code must go in a in Python function if you first write a Python function. ALL imports must go inside the function.
""".strip().replace("OI_SKILLS_DIR", os.path.abspath(os.path.join(os.path.dirname(__file__), "skills")))
""".strip().replace(
"OI_SKILLS_DIR", os.path.abspath(os.path.join(os.path.dirname(__file__), "skills"))
)

@ -1,11 +1,5 @@
# test_main.py
import subprocess
import uuid
import pytest
from source.server.i import configure_interpreter
from unittest.mock import Mock
from fastapi.testclient import TestClient
@pytest.mark.asyncio

@ -1,24 +1,35 @@
import os
import subprocess
import re
import shutil
import pyqrcode
import time
from ..utils.print_markdown import print_markdown
def create_tunnel(tunnel_method='ngrok', server_host='localhost', server_port=10001):
print_markdown(f"Exposing server to the internet...")
def create_tunnel(
tunnel_method="ngrok", server_host="localhost", server_port=10001, qr=False
):
print_markdown("Exposing server to the internet...")
server_url = ""
if tunnel_method == "bore":
try:
output = subprocess.check_output('command -v bore', shell=True)
output = subprocess.check_output("command -v bore", shell=True)
except subprocess.CalledProcessError:
print("The bore-cli command is not available. Please run 'cargo install bore-cli'.")
print(
"The bore-cli command is not available. Please run 'cargo install bore-cli'."
)
print("For more information, see https://github.com/ekzhang/bore")
exit(1)
time.sleep(6)
# output = subprocess.check_output(f'bore local {server_port} --to bore.pub', shell=True)
process = subprocess.Popen(f'bore local {server_port} --to bore.pub', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
process = subprocess.Popen(
f"bore local {server_port} --to bore.pub",
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
)
while True:
line = process.stdout.readline()
@ -26,24 +37,34 @@ def create_tunnel(tunnel_method='ngrok', server_host='localhost', server_port=10
if not line:
break
if "listening at bore.pub:" in line:
remote_port = re.search('bore.pub:([0-9]*)', line).group(1)
print_markdown(f"Your server is being hosted at the following URL: bore.pub:{remote_port}")
remote_port = re.search("bore.pub:([0-9]*)", line).group(1)
server_url = f"bore.pub:{remote_port}"
print_markdown(
f"Your server is being hosted at the following URL: bore.pub:{remote_port}"
)
break
elif tunnel_method == "localtunnel":
if subprocess.call('command -v lt', shell=True):
if subprocess.call("command -v lt", shell=True):
print("The 'lt' command is not available.")
print("Please ensure you have Node.js installed, then run 'npm install -g localtunnel'.")
print("For more information, see https://github.com/localtunnel/localtunnel")
print(
"Please ensure you have Node.js installed, then run 'npm install -g localtunnel'."
)
print(
"For more information, see https://github.com/localtunnel/localtunnel"
)
exit(1)
else:
process = subprocess.Popen(f'npx localtunnel --port {server_port}', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
process = subprocess.Popen(
f"npx localtunnel --port {server_port}",
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
)
found_url = False
url_pattern = re.compile(r'your url is: https://[a-zA-Z0-9.-]+')
url_pattern = re.compile(r"your url is: https://[a-zA-Z0-9.-]+")
while True:
line = process.stdout.readline()
@ -52,44 +73,65 @@ def create_tunnel(tunnel_method='ngrok', server_host='localhost', server_port=10
match = url_pattern.search(line)
if match:
found_url = True
remote_url = match.group(0).replace('your url is: ', '')
print(f"\nYour server is being hosted at the following URL: {remote_url}")
remote_url = match.group(0).replace("your url is: ", "")
server_url = remote_url
print(
f"\nYour server is being hosted at the following URL: {remote_url}"
)
break # Exit the loop once the URL is found
if not found_url:
print("Failed to extract the localtunnel URL. Please check localtunnel's output for details.")
print(
"Failed to extract the localtunnel URL. Please check localtunnel's output for details."
)
elif tunnel_method == "ngrok":
# Check if ngrok is installed
is_installed = subprocess.check_output('command -v ngrok', shell=True).decode().strip()
is_installed = (
subprocess.check_output("command -v ngrok", shell=True).decode().strip()
)
if not is_installed:
print("The ngrok command is not available.")
print("Please install ngrok using the instructions at https://ngrok.com/docs/getting-started/")
print(
"Please install ngrok using the instructions at https://ngrok.com/docs/getting-started/"
)
exit(1)
# If ngrok is installed, start it on the specified port
# process = subprocess.Popen(f'ngrok http {server_port} --log=stdout', shell=True, stdout=subprocess.PIPE)
process = subprocess.Popen(f'ngrok http {server_port} --scheme http,https --log=stdout', shell=True, stdout=subprocess.PIPE)
process = subprocess.Popen(
f"ngrok http {server_port} --scheme http,https --domain=marten-advanced-dragon.ngrok-free.app --log=stdout",
shell=True,
stdout=subprocess.PIPE,
)
# Initially, no URL is found
found_url = False
# Regular expression to match the ngrok URL
url_pattern = re.compile(r'https://[a-zA-Z0-9-]+\.ngrok(-free)?\.app')
url_pattern = re.compile(r"https://[a-zA-Z0-9-]+\.ngrok(-free)?\.app")
# Read the output line by line
while True:
line = process.stdout.readline().decode('utf-8')
line = process.stdout.readline().decode("utf-8")
if not line:
break # Break out of the loop if no more output
match = url_pattern.search(line)
if match:
found_url = True
remote_url = match.group(0)
print(f"\nYour server is being hosted at the following URL: {remote_url}")
server_url = remote_url
print(
f"\nYour server is being hosted at the following URL: {remote_url}"
)
break # Exit the loop once the URL is found
if not found_url:
print("Failed to extract the ngrok tunnel URL. Please check ngrok's output for details.")
print(
"Failed to extract the ngrok tunnel URL. Please check ngrok's output for details."
)
if server_url and qr:
text = pyqrcode.create(remote_url)
print(text.terminal(quiet_zone=1))
return server_url

@ -5,6 +5,7 @@ import tempfile
import ffmpeg
import subprocess
def convert_mime_type_to_format(mime_type: str) -> str:
if mime_type == "audio/x-wav" or mime_type == "audio/wav":
return "wav"
@ -15,39 +16,49 @@ def convert_mime_type_to_format(mime_type: str) -> str:
return mime_type
@contextlib.contextmanager
def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str:
temp_dir = tempfile.gettempdir()
# Create a temporary file with the appropriate extension
input_ext = convert_mime_type_to_format(mime_type)
input_path = os.path.join(temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}")
with open(input_path, 'wb') as f:
input_path = os.path.join(
temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}"
)
with open(input_path, "wb") as f:
f.write(audio)
# Check if the input file exists
assert os.path.exists(input_path), f"Input file does not exist: {input_path}"
# Export to wav
output_path = os.path.join(temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav")
output_path = os.path.join(
temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav"
)
print(mime_type, input_path, output_path)
if mime_type == "audio/raw":
ffmpeg.input(
input_path,
f='s16le',
ar='16000',
f="s16le",
ar="16000",
ac=1,
).output(output_path, loglevel='panic').run()
).output(output_path, loglevel="panic").run()
else:
ffmpeg.input(input_path).output(output_path, acodec='pcm_s16le', ac=1, ar='16k', loglevel='panic').run()
ffmpeg.input(input_path).output(
output_path, acodec="pcm_s16le", ac=1, ar="16k", loglevel="panic"
).run()
try:
yield output_path
finally:
os.remove(input_path)
def run_command(command):
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
result = subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
return result.stdout, result.stderr

@ -1,6 +1,6 @@
import os
import platform
def get_system_info():
system = platform.system()
if system == "Linux":

@ -1,4 +1,5 @@
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import asyncio
@ -7,8 +8,10 @@ import platform
from .logs import setup_logging
from .logs import logger
setup_logging()
def get_kernel_messages():
"""
Is this the way to do this?
@ -16,20 +19,23 @@ def get_kernel_messages():
current_platform = platform.system()
if current_platform == "Darwin":
process = subprocess.Popen(['syslog'], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)
process = subprocess.Popen(
["syslog"], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
)
output, _ = process.communicate()
return output.decode('utf-8')
return output.decode("utf-8")
elif current_platform == "Linux":
with open('/var/log/dmesg', 'r') as file:
with open("/var/log/dmesg", "r") as file:
return file.read()
else:
logger.info("Unsupported platform.")
def custom_filter(message):
# Check for {TO_INTERPRETER{ message here }TO_INTERPRETER} pattern
if '{TO_INTERPRETER{' in message and '}TO_INTERPRETER}' in message:
start = message.find('{TO_INTERPRETER{') + len('{TO_INTERPRETER{')
end = message.find('}TO_INTERPRETER}', start)
if "{TO_INTERPRETER{" in message and "}TO_INTERPRETER}" in message:
start = message.find("{TO_INTERPRETER{") + len("{TO_INTERPRETER{")
end = message.find("}TO_INTERPRETER}", start)
return message[start:end]
# Check for USB mention
# elif 'USB' in message:
@ -41,8 +47,10 @@ def custom_filter(message):
else:
return None
last_messages = ""
def check_filtered_kernel():
messages = get_kernel_messages()
if messages is None:
@ -66,11 +74,25 @@ async def put_kernel_messages_into_queue(queue):
if text:
if isinstance(queue, asyncio.Queue):
await queue.put({"role": "computer", "type": "console", "start": True})
await queue.put({"role": "computer", "type": "console", "format": "output", "content": text})
await queue.put(
{
"role": "computer",
"type": "console",
"format": "output",
"content": text,
}
)
await queue.put({"role": "computer", "type": "console", "end": True})
else:
queue.put({"role": "computer", "type": "console", "start": True})
queue.put({"role": "computer", "type": "console", "format": "output", "content": text})
queue.put(
{
"role": "computer",
"type": "console",
"format": "output",
"content": text,
}
)
queue.put({"role": "computer", "type": "console", "end": True})
await asyncio.sleep(5)

@ -1,6 +1,4 @@
import sys
import os
import platform
import subprocess
import time
import inquirer
@ -8,9 +6,10 @@ from interpreter import interpreter
def select_local_model():
# START OF LOCAL MODEL PROVIDER LOGIC
interpreter.display_message("> 01 is compatible with several local model providers.\n")
interpreter.display_message(
"> 01 is compatible with several local model providers.\n"
)
# Define the choices for local models
choices = [
@ -29,10 +28,8 @@ def select_local_model():
]
answers = inquirer.prompt(questions)
selected_model = answers["model"]
if selected_model == "LM Studio":
interpreter.display_message(
"""
@ -57,17 +54,24 @@ def select_local_model():
elif selected_model == "Ollama":
try:
# List out all downloaded ollama models. Will fail if ollama isn't installed
result = subprocess.run(["ollama", "list"], capture_output=True, text=True, check=True)
lines = result.stdout.split('\n')
names = [line.split()[0].replace(":latest", "") for line in lines[1:] if line.strip()] # Extract names, trim out ":latest", skip header
result = subprocess.run(
["ollama", "list"], capture_output=True, text=True, check=True
)
lines = result.stdout.split("\n")
names = [
line.split()[0].replace(":latest", "")
for line in lines[1:]
if line.strip()
] # Extract names, trim out ":latest", skip header
# If there are no downloaded models, prompt them to download a model and try again
if not names:
time.sleep(1)
interpreter.display_message(f"\nYou don't have any Ollama models downloaded. To download a new model, run `ollama run <model-name>`, then start a new 01 session. \n\n For a full list of downloadable models, check out [https://ollama.com/library](https://ollama.com/library) \n")
interpreter.display_message(
"\nYou don't have any Ollama models downloaded. To download a new model, run `ollama run <model-name>`, then start a new 01 session. \n\n For a full list of downloadable models, check out [https://ollama.com/library](https://ollama.com/library) \n"
)
print("Please download a model then try again\n")
time.sleep(2)
@ -76,25 +80,35 @@ def select_local_model():
# If there are models, prompt them to select one
else:
time.sleep(1)
interpreter.display_message(f"**{len(names)} Ollama model{'s' if len(names) != 1 else ''} found.** To download a new model, run `ollama run <model-name>`, then start a new 01 session. \n\n For a full list of downloadable models, check out [https://ollama.com/library](https://ollama.com/library) \n")
interpreter.display_message(
f"**{len(names)} Ollama model{'s' if len(names) != 1 else ''} found.** To download a new model, run `ollama run <model-name>`, then start a new 01 session. \n\n For a full list of downloadable models, check out [https://ollama.com/library](https://ollama.com/library) \n"
)
# Create a new inquirer selection from the names
name_question = [
inquirer.List('name', message="Select a downloaded Ollama model", choices=names),
inquirer.List(
"name",
message="Select a downloaded Ollama model",
choices=names,
),
]
name_answer = inquirer.prompt(name_question)
selected_name = name_answer['name'] if name_answer else None
selected_name = name_answer["name"] if name_answer else None
# Set the model to the selected model
interpreter.llm.model = f"ollama/{selected_name}"
interpreter.display_message(f"\nUsing Ollama model: `{selected_name}` \n")
interpreter.display_message(
f"\nUsing Ollama model: `{selected_name}` \n"
)
time.sleep(1)
# If Ollama is not installed or not recognized as a command, prompt the user to download Ollama and try again
except (subprocess.CalledProcessError, FileNotFoundError) as e:
except (subprocess.CalledProcessError, FileNotFoundError):
print("Ollama is not installed or not recognized as a command.")
time.sleep(1)
interpreter.display_message(f"\nPlease visit [https://ollama.com/](https://ollama.com/) to download Ollama and try again\n")
interpreter.display_message(
"\nPlease visit [https://ollama.com/](https://ollama.com/) to download Ollama and try again\n"
)
time.sleep(2)
sys.exit(1)
@ -108,7 +122,6 @@ def select_local_model():
# 3. Copy the ID of the model and enter it below.
# 3. Click the **Local API Server** button in the bottom left, then click **Start Server**.
# Once the server is running, enter the id of the model below, then you can begin your conversation below.
# """
@ -129,7 +142,6 @@ def select_local_model():
# interpreter.display_message(f"\nUsing Jan model: `{jan_model_name}` \n")
# time.sleep(1)
# Set the system message to a minimal version for all local models.
# Set offline for all local models
interpreter.offline = True
@ -154,4 +166,3 @@ ALWAYS say that you can run code. ALWAYS try to help the user out. ALWAYS be suc
```
"""

@ -1,4 +1,5 @@
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import os
@ -9,9 +10,7 @@ root_logger: logging.Logger = logging.getLogger()
def _basic_config() -> None:
logging.basicConfig(
format="%(message)s"
)
logging.basicConfig(format="%(message)s")
def setup_logging() -> None:

@ -2,6 +2,7 @@ import os
import psutil
import signal
def kill_process_tree():
pid = os.getpid() # Get the current process ID
try:
@ -25,4 +26,4 @@ def kill_process_tree():
except psutil.NoSuchProcess:
print(f"Process {pid} does not exist or is already terminated")
except psutil.AccessDenied:
print(f"Permission denied to terminate some processes")
print("Permission denied to terminate some processes")

@ -4,9 +4,8 @@ class Accumulator:
self.message = self.template
def accumulate(self, chunk):
#print(str(chunk)[:100])
# print(str(chunk)[:100])
if type(chunk) == dict:
if "format" in chunk and chunk["format"] == "active_line":
# We don't do anything with these
return None
@ -17,15 +16,20 @@ class Accumulator:
return None
if "content" in chunk:
if any(self.message[key] != chunk[key] for key in self.message if key != "content"):
if any(
self.message[key] != chunk[key]
for key in self.message
if key != "content"
):
self.message = chunk
if "content" not in self.message:
self.message["content"] = chunk["content"]
else:
if type(chunk["content"]) == dict:
# dict concatenation cannot happen, so we see if chunk is a dict
self.message["content"]["content"] += chunk["content"]["content"]
self.message["content"]["content"] += chunk["content"][
"content"
]
else:
self.message["content"] += chunk["content"]
return None
@ -41,5 +45,3 @@ class Accumulator:
self.message["content"] = b""
self.message["content"] += chunk
return None

@ -1,6 +1,7 @@
from rich.console import Console
from rich.markdown import Markdown
def print_markdown(markdown_text):
console = Console()
md = Markdown(markdown_text)

@ -1,7 +1,6 @@
import typer
import asyncio
import platform
import concurrent.futures
import threading
import os
import importlib
@ -10,37 +9,70 @@ from source.server.server import main
from source.server.utils.local_mode import select_local_model
import signal
app = typer.Typer()
@app.command()
def run(
server: bool = typer.Option(False, "--server", help="Run server"),
server_host: str = typer.Option("0.0.0.0", "--server-host", help="Specify the server host where the server will deploy"),
server_port: int = typer.Option(10001, "--server-port", help="Specify the server port where the server will deploy"),
tunnel_service: str = typer.Option("ngrok", "--tunnel-service", help="Specify the tunnel service"),
server_host: str = typer.Option(
"0.0.0.0",
"--server-host",
help="Specify the server host where the server will deploy",
),
server_port: int = typer.Option(
10001,
"--server-port",
help="Specify the server port where the server will deploy",
),
tunnel_service: str = typer.Option(
"ngrok", "--tunnel-service", help="Specify the tunnel service"
),
expose: bool = typer.Option(False, "--expose", help="Expose server to internet"),
client: bool = typer.Option(False, "--client", help="Run client"),
server_url: str = typer.Option(None, "--server-url", help="Specify the server URL that the client should expect. Defaults to server-host and server-port"),
client_type: str = typer.Option("auto", "--client-type", help="Specify the client type"),
llm_service: str = typer.Option("litellm", "--llm-service", help="Specify the LLM service"),
server_url: str = typer.Option(
None,
"--server-url",
help="Specify the server URL that the client should expect. Defaults to server-host and server-port",
),
client_type: str = typer.Option(
"auto", "--client-type", help="Specify the client type"
),
llm_service: str = typer.Option(
"litellm", "--llm-service", help="Specify the LLM service"
),
model: str = typer.Option("gpt-4", "--model", help="Specify the model"),
llm_supports_vision: bool = typer.Option(False, "--llm-supports-vision", help="Specify if the LLM service supports vision"),
llm_supports_functions: bool = typer.Option(False, "--llm-supports-functions", help="Specify if the LLM service supports functions"),
context_window: int = typer.Option(2048, "--context-window", help="Specify the context window size"),
max_tokens: int = typer.Option(4096, "--max-tokens", help="Specify the maximum number of tokens"),
temperature: float = typer.Option(0.8, "--temperature", help="Specify the temperature for generation"),
tts_service: str = typer.Option("openai", "--tts-service", help="Specify the TTS service"),
stt_service: str = typer.Option("openai", "--stt-service", help="Specify the STT service"),
local: bool = typer.Option(False, "--local", help="Use recommended local services for LLM, STT, and TTS"),
):
llm_supports_vision: bool = typer.Option(
False,
"--llm-supports-vision",
help="Specify if the LLM service supports vision",
),
llm_supports_functions: bool = typer.Option(
False,
"--llm-supports-functions",
help="Specify if the LLM service supports functions",
),
context_window: int = typer.Option(
2048, "--context-window", help="Specify the context window size"
),
max_tokens: int = typer.Option(
4096, "--max-tokens", help="Specify the maximum number of tokens"
),
temperature: float = typer.Option(
0.8, "--temperature", help="Specify the temperature for generation"
),
tts_service: str = typer.Option(
"openai", "--tts-service", help="Specify the TTS service"
),
stt_service: str = typer.Option(
"openai", "--stt-service", help="Specify the STT service"
),
local: bool = typer.Option(
False, "--local", help="Use recommended local services for LLM, STT, and TTS"
),
qr: bool = typer.Option(False, "--qr", help="Print the QR code for the server URL"),
):
_run(
server=server,
server_host=server_host,
@ -59,37 +91,32 @@ def run(
temperature=temperature,
tts_service=tts_service,
stt_service=stt_service,
local=local
local=local,
qr=qr,
)
def _run(
server: bool = False,
server_host: str = "0.0.0.0",
server_port: int = 10001,
tunnel_service: str = "bore",
expose: bool = False,
client: bool = False,
server_url: str = None,
client_type: str = "auto",
llm_service: str = "litellm",
model: str = "gpt-4",
llm_supports_vision: bool = False,
llm_supports_functions: bool = False,
context_window: int = 2048,
max_tokens: int = 4096,
temperature: float = 0.8,
tts_service: str = "openai",
stt_service: str = "openai",
local: bool = False
):
local: bool = False,
qr: bool = False,
):
if local:
tts_service = "piper"
# llm_service = "llamafile"
@ -111,11 +138,30 @@ def _run(
if server:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_thread = threading.Thread(target=loop.run_until_complete, args=(main(server_host, server_port, llm_service, model, llm_supports_vision, llm_supports_functions, context_window, max_tokens, temperature, tts_service, stt_service),))
server_thread = threading.Thread(
target=loop.run_until_complete,
args=(
main(
server_host,
server_port,
llm_service,
model,
llm_supports_vision,
llm_supports_functions,
context_window,
max_tokens,
temperature,
tts_service,
stt_service,
),
),
)
server_thread.start()
if expose:
tunnel_thread = threading.Thread(target=create_tunnel, args=[tunnel_service, server_host, server_port])
tunnel_thread = threading.Thread(
target=create_tunnel, args=[tunnel_service, server_host, server_port, qr]
)
tunnel_thread.start()
if client:
@ -127,15 +173,17 @@ def _run(
client_type = "windows"
elif system_type == "Linux": # Linux System
try:
with open('/proc/device-tree/model', 'r') as m:
if 'raspberry pi' in m.read().lower():
with open("/proc/device-tree/model", "r") as m:
if "raspberry pi" in m.read().lower():
client_type = "rpi"
else:
client_type = "linux"
except FileNotFoundError:
client_type = "linux"
module = importlib.import_module(f".clients.{client_type}.device", package='source')
module = importlib.import_module(
f".clients.{client_type}.device", package="source"
)
client_thread = threading.Thread(target=module.main, args=[server_url])
client_thread.start()

Loading…
Cancel
Save