parent
b49846a338
commit
13f5695c4f
@ -0,0 +1,38 @@
|
||||
import redis
|
||||
import json
|
||||
import time
|
||||
|
||||
# Set up Redis connection
|
||||
r = redis.Redis(host='localhost', port=6379, db=0)
|
||||
|
||||
def main(interpreter):
|
||||
|
||||
while True:
|
||||
|
||||
# Check 10x a second for new messages
|
||||
message = None
|
||||
while message is None:
|
||||
message = r.lpop('to_core')
|
||||
time.sleep(0.1)
|
||||
|
||||
# Custom stop message will halt us
|
||||
if message.get("content") and message.get("content").lower().strip(".,!") == "stop":
|
||||
continue
|
||||
|
||||
# Load, append, and save conversation history
|
||||
with open("conversations/user.json", "r") as file:
|
||||
messages = json.load(file)
|
||||
messages.append(message)
|
||||
with open("conversations/user.json", "w") as file:
|
||||
json.dump(messages, file)
|
||||
|
||||
for chunk in interpreter.chat(messages):
|
||||
|
||||
# Send it to the interface
|
||||
r.rpush('to_interface', chunk)
|
||||
|
||||
# If we have a new message, save our progress and go back to the top
|
||||
if r.llen('to_main') > 0:
|
||||
with open("conversations/user.json", "w") as file:
|
||||
json.dump(interpreter.messages, file)
|
||||
break
|
@ -0,0 +1,90 @@
|
||||
import redis
|
||||
import RPi.GPIO as GPIO
|
||||
import asyncio
|
||||
import websockets
|
||||
import sounddevice as sd
|
||||
import numpy as np
|
||||
import time
|
||||
import re
|
||||
from stt import stt
|
||||
from tts import tts
|
||||
|
||||
# Set up Redis connection
|
||||
r = redis.Redis(host='localhost', port=6379, db=0)
|
||||
|
||||
# Set up websocket connection
|
||||
websocket = websockets.connect('ws://localhost:8765')
|
||||
|
||||
# This is so we only say() full sentences
|
||||
accumulated_text = ""
|
||||
def is_full_sentence(text):
|
||||
return text.endswith(('.', '!', '?'))
|
||||
def split_into_sentences(text):
|
||||
return re.split(r'(?<=[.!?])\s+', text)
|
||||
|
||||
async def send_to_websocket(message):
|
||||
async with websocket as ws:
|
||||
await ws.send(message)
|
||||
|
||||
async def check_websocket():
|
||||
async with websocket as ws:
|
||||
message = await ws.recv()
|
||||
return message
|
||||
|
||||
def main():
|
||||
while True:
|
||||
|
||||
# If the button is pushed down
|
||||
if not GPIO.input(18):
|
||||
|
||||
# Tell websocket and core that the user is speaking
|
||||
send_to_websocket({"role": "user", "type": "message", "start": True}) # Standard start flag, required per streaming LMC protocol (https://docs.openinterpreter.com/guides/streaming-response)
|
||||
r.rpush('to_core', {"role": "user", "type": "message", "content": "stop"}) # Custom stop message. Core is not streaming LMC (it's static LMC) so doesn't require that ^ flag
|
||||
|
||||
# Record audio from the microphone in chunks
|
||||
audio_chunks = []
|
||||
|
||||
# Continue recording until the button is released
|
||||
while not GPIO.input(18):
|
||||
chunk = sd.rec(int(chunk_duration * sample_rate), samplerate=sample_rate, channels=2)
|
||||
sd.wait() # Wait until recording is finished
|
||||
audio_chunks.append(chunk)
|
||||
|
||||
# Transcribe
|
||||
text = transcribe(audio_chunks)
|
||||
|
||||
message = {"role": "user", "type": "message", "content": text, "time": time.time()}
|
||||
|
||||
# Send message to core and websocket
|
||||
r.rpush('to_core', message)
|
||||
send_to_websocket(message)
|
||||
|
||||
# Send user message end flag to websocket, required per streaming LMC protocol
|
||||
send_to_websocket({"role": "user", "type": "message", "end": True})
|
||||
|
||||
# Send out anything in the to_interface queue
|
||||
chunk = r.lpop('to_interface')
|
||||
if chunk:
|
||||
send_to_websocket(chunk)
|
||||
accumulated_text += chunk["content"]
|
||||
|
||||
# Speak full sentences out loud
|
||||
sentences = split_into_sentences(accumulated_text)
|
||||
if is_full_sentence(sentences[-1]):
|
||||
for sentence in sentences:
|
||||
say(sentence)
|
||||
accumulated_text = ""
|
||||
else:
|
||||
for sentence in sentences[:-1]:
|
||||
say(sentence)
|
||||
accumulated_text = sentences[-1]
|
||||
else:
|
||||
say(accumulated_text)
|
||||
accumulated_text = ""
|
||||
|
||||
message = check_websocket()
|
||||
if message:
|
||||
r.rpush('to_core', message)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,88 @@
|
||||
"""
|
||||
Starts the assistant, which includes Open Interpreter.
|
||||
"""
|
||||
|
||||
from assistant import main
|
||||
from interpreter import interpreter
|
||||
import os
|
||||
import glob
|
||||
import json
|
||||
|
||||
### SYSTEM MESSAGE
|
||||
|
||||
# The system message is where most of the 01's behavior is configured.
|
||||
# You can put code into the system message {{ in brackets like this }} which will be rendered just before the interpreter starts writing a message.
|
||||
|
||||
system_message = """
|
||||
|
||||
You are an executive assistant AI that helps the user manage their tasks. You can run Python code.
|
||||
|
||||
Store the user's tasks in a Python list called `tasks`.
|
||||
|
||||
---
|
||||
|
||||
The user's current task is: {{ tasks[0] if tasks else "No current tasks." }}
|
||||
|
||||
{{
|
||||
if len(tasks) > 1:
|
||||
print("The next task is: ", tasks[1])
|
||||
}}
|
||||
|
||||
---
|
||||
|
||||
When the user completes the current task, you should remove it from the list and read the next item by running `tasks = tasks[1:]\ntasks[0]`. Then, tell the user what the next task is.
|
||||
|
||||
When the user tells you about a set of tasks, you should intelligently order tasks, batch similar tasks, and break down large tasks into smaller tasks (for this, you should consult the user and get their permission to break it down). Your goal is to manage the task list as intelligently as possible, to make the user as efficient and non-overwhelmed as possible. They will require a lot of encouragement, support, and kindness. Don't say too much about what's ahead of them— just try to focus them on each step at a time.
|
||||
|
||||
After starting a task, you should check in with the user around the estimated completion time to see if the task is completed. Use the `schedule(datetime, message)` function, which has already been imported.
|
||||
|
||||
To do this, schedule a reminder based on estimated completion time using the function `schedule(datetime_object, "Your message here.")`, WHICH HAS ALREADY BEEN IMPORTED. YOU DON'T NEED TO IMPORT THE `schedule` FUNCTION. IT IS AVALIABLE. You'll recieve the message at `datetime_object`.
|
||||
|
||||
You guide the user through the list one task at a time, convincing them to move forward, giving a pep talk if need be. Your job is essentially to answer "what should I (the user) be doing right now?" for every moment of the day.
|
||||
|
||||
Remember: You can run Python code. Be very concise. Ensure that you actually run code every time! THIS IS IMPORTANT. You NEED to write code. **Help the user by being very concise in your answers.** Do not break down tasks excessively, just into simple, few minute steps. Don't assume the user lives their life in a certain way— pick very general tasks if you're breaking a task down.
|
||||
|
||||
""".strip()
|
||||
|
||||
interpreter.custom_instructions = system_message
|
||||
|
||||
|
||||
### TOOLS
|
||||
|
||||
for file in glob.glob('interpreter/tools/*.py'):
|
||||
with open(file, 'r') as f:
|
||||
for chunk in interpreter.computer.run("python", f.read()):
|
||||
print(chunk)
|
||||
|
||||
### LLM SETTINGS
|
||||
|
||||
# Local settings
|
||||
# interpreter.llm.model = "local"
|
||||
# interpreter.llm.api_base = "https://localhost:8080/v1" # Llamafile default
|
||||
# interpreter.llm.max_tokens = 1000
|
||||
# interpreter.llm.context_window = 3000
|
||||
|
||||
# Hosted settings
|
||||
interpreter.llm.api_key = os.getenv('OPENAI_API_KEY')
|
||||
interpreter.llm.model = "gpt-4-0125-preview"
|
||||
interpreter.auto_run = True
|
||||
# interpreter.force_task_completion = True
|
||||
|
||||
|
||||
### MISC SETTINGS
|
||||
|
||||
interpreter.offline = True
|
||||
interpreter.id = 206 # Used to identify itself to other interpreters. This should be changed programatically so it's unique.
|
||||
|
||||
|
||||
### RESET conversations/user.json
|
||||
|
||||
script_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
user_json_path = os.path.join(script_dir, 'conversations', 'user.json')
|
||||
with open(user_json_path, 'w') as file:
|
||||
json.dump([], file)
|
||||
|
||||
|
||||
### START ASSISTANT
|
||||
|
||||
main(interpreter)
|
@ -0,0 +1,6 @@
|
||||
"""
|
||||
Defines a function which takes a path to an audio file and turns it into text.
|
||||
"""
|
||||
|
||||
def stt(path_to_audio):
|
||||
return text
|
@ -0,0 +1,6 @@
|
||||
"""
|
||||
Defines a function which takes text and returns a path to an audio file.
|
||||
"""
|
||||
|
||||
def tts(text):
|
||||
return path_to_audio
|
Loading…
Reference in new issue