revert anticipation to default

pull/314/head
Ben Xu 1 week ago
parent 16fb2b3023
commit 8c89960299

@ -3,7 +3,7 @@ import json
import base64
import traceback
import io
import os
import re
from PIL import Image as PIL_Image
from openai import OpenAI
@ -20,15 +20,18 @@ INSTRUCTIONS_PROMPT = """Given the conversation context and the current video fr
Rate the severity of violation from 0-10, where 10 is most severe.
Instructions to check:
1. Ensure that the screenshot is NOT YOUTUBE or other video content
1. Ensure that there is no one in the frame.
Respond in the following JSON format:
{
"""
RESPONSE_FORMAT = """
Respond in the following JSON format:
{
"violation_detected": boolean,
"severity_rating": number,
"violation_summary": string,
"recommendations": string
}
}
"""
@ -53,7 +56,7 @@ async def handle_instruction_check(
log_message(f"Violation detected with severity {result['severity_rating']}, triggering assistant response")
# Append violation to chat context
violation_text = f"For the given instructions: {INSTRUCTIONS_PROMPT}\n. Instruction violation frame detected: {result['violation_summary']}\nRecommendations: {result['recommendations']}"
violation_text = f"Instruction violation frame detected: {result['violation_summary']}\nRecommendations: {result['recommendations']}"
assistant.chat_ctx.append(
role="user",
text=violation_text
@ -75,12 +78,16 @@ async def handle_instruction_check(
# TODO: instead of saying the predetermined response, we'll trigger an assistant response here
# we can append the current video frame that triggered the violation to the chat context
stream = assistant.llm.chat(
chat_ctx=assistant.chat_ctx,
fnc_ctx=assistant.fnc_ctx,
)
# NOTE: this currently produces an unexpected connection error:
# httpcore.ConnectError: All connection attempts failed
await assistant.say(stream)
# stream = assistant.llm.chat(
# chat_ctx=assistant.chat_ctx,
# fnc_ctx=assistant.fnc_ctx,
# )
# we temporarily default back to saying the predetermined response
await assistant.say(violation_text)
else:
log_message("No significant violations detected or severity below threshold")
except Exception as e:
@ -93,15 +100,11 @@ async def check_instruction_violation(
chat_ctx: ChatContext,
video_frame: rtc.VideoFrame,
) -> Dict[str, Any]:
"""Make a call to GPT-4 Vision to check for instruction violations"""
"""Makes a call to gpt-4o-mini to check for instruction violations"""
log_message("Creating new context for instruction check...")
try:
# pull this from env.
interpreter_server_host = os.getenv('INTERPRETER_SERVER_HOST', 'localhost')
interpreter_server_port = os.getenv('INTERPRETER_SERVER_PORT', '8000')
base_url = f"http://{interpreter_server_host}:{interpreter_server_port}/"
client = OpenAI(base_url)
client = OpenAI()
try:
# Get raw RGBA data
@ -135,7 +138,7 @@ async def check_instruction_violation(
{
"role": "user",
"content": [
{"type": "text", "text": INSTRUCTIONS_PROMPT},
{"type": "text", "text": INSTRUCTIONS_PROMPT + RESPONSE_FORMAT},
{
"type": "image_url",
"image_url": {
@ -154,7 +157,12 @@ async def check_instruction_violation(
try:
# Parse the response content
result = json.loads(response.choices[0].message.content)
# Clean up the LLM response if it includes ```json ... ```
content = response.choices[0].message.content.strip()
content = re.sub(r'^```(?:json)?', '', content) # remove leading triple backticks and optional 'json'
content = re.sub(r'```$', '', content).strip() # remove trailing triple backticks
result = json.loads(content)
log_message(f"Successfully parsed LLM response: {json.dumps(result, indent=2)}")
return result
except Exception as e:

Loading…
Cancel
Save