You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
3.5 KiB
87 lines
3.5 KiB
3 months ago
|
import pyrealsense2 as rs
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
import tensorflow as tf
|
||
|
|
||
|
# Configure depth and color streams
|
||
|
pipeline = rs.pipeline()
|
||
|
config = rs.config()
|
||
|
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
|
||
|
|
||
|
print("[INFO] Starting streaming...")
|
||
|
pipeline.start(config)
|
||
|
print("[INFO] Camera ready.")
|
||
|
|
||
|
# download model from: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#run-network-in-opencv
|
||
|
print("[INFO] Loading model...")
|
||
|
PATH_TO_CKPT = "frozen_inference_graph.pb"
|
||
|
|
||
|
# Load the Tensorflow model into memory.
|
||
|
detection_graph = tf.Graph()
|
||
|
with detection_graph.as_default():
|
||
|
od_graph_def = tf.compat.v1.GraphDef()
|
||
|
with tf.compat.v1.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
||
|
serialized_graph = fid.read()
|
||
|
od_graph_def.ParseFromString(serialized_graph)
|
||
|
tf.compat.v1.import_graph_def(od_graph_def, name='')
|
||
|
sess = tf.compat.v1.Session(graph=detection_graph)
|
||
|
|
||
|
# Input tensor is the image
|
||
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||
|
# Output tensors are the detection boxes, scores, and classes
|
||
|
# Each box represents a part of the image where a particular object was detected
|
||
|
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
||
|
# Each score represents level of confidence for each of the objects.
|
||
|
# The score is shown on the result image, together with the class label.
|
||
|
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
||
|
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
||
|
# Number of objects detected
|
||
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
||
|
# code source of tensorflow model loading: https://www.geeksforgeeks.org/ml-training-image-classifier-using-tensorflow-object-detection-api/
|
||
|
print("[INFO] Model loaded.")
|
||
|
colors_hash = {}
|
||
|
while True:
|
||
|
frames = pipeline.wait_for_frames()
|
||
|
color_frame = frames.get_color_frame()
|
||
|
|
||
|
# Convert images to numpy arrays
|
||
|
color_image = np.asanyarray(color_frame.get_data())
|
||
|
scaled_size = (color_frame.width, color_frame.height)
|
||
|
# expand image dimensions to have shape: [1, None, None, 3]
|
||
|
# i.e. a single-column array, where each item in the column has the pixel RGB value
|
||
|
image_expanded = np.expand_dims(color_image, axis=0)
|
||
|
# Perform the actual detection by running the model with the image as input
|
||
|
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],
|
||
|
feed_dict={image_tensor: image_expanded})
|
||
|
|
||
|
boxes = np.squeeze(boxes)
|
||
|
classes = np.squeeze(classes).astype(np.int32)
|
||
|
scores = np.squeeze(scores)
|
||
|
|
||
|
for idx in range(int(num)):
|
||
|
class_ = classes[idx]
|
||
|
score = scores[idx]
|
||
|
box = boxes[idx]
|
||
|
|
||
|
if class_ not in colors_hash:
|
||
|
colors_hash[class_] = tuple(np.random.choice(range(256), size=3))
|
||
|
|
||
|
if score > 0.6:
|
||
|
left = int(box[1] * color_frame.width)
|
||
|
top = int(box[0] * color_frame.height)
|
||
|
right = int(box[3] * color_frame.width)
|
||
|
bottom = int(box[2] * color_frame.height)
|
||
|
|
||
|
p1 = (left, top)
|
||
|
p2 = (right, bottom)
|
||
|
# draw box
|
||
|
r, g, b = colors_hash[class_]
|
||
|
cv2.rectangle(color_image, p1, p2, (int(r), int(g), int(b)), 2, 1)
|
||
|
|
||
|
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
|
||
|
cv2.imshow('RealSense', color_image)
|
||
|
cv2.waitKey(1)
|
||
|
|
||
|
print("[INFO] stop streaming ...")
|
||
|
pipeline.stop()
|