You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
5.1 KiB
132 lines
5.1 KiB
3 months ago
|
import pyrealsense2 as rs
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
import tensorflow as tf
|
||
|
|
||
|
W = 848
|
||
|
H = 480
|
||
|
|
||
|
# Configure depth and color streams
|
||
|
pipeline = rs.pipeline()
|
||
|
config = rs.config()
|
||
|
config.enable_stream(rs.stream.depth, W, H, rs.format.z16, 30)
|
||
|
config.enable_stream(rs.stream.color, W, H, rs.format.bgr8, 30)
|
||
|
|
||
|
|
||
|
print("[INFO] start streaming...")
|
||
|
pipeline.start(config)
|
||
|
|
||
|
aligned_stream = rs.align(rs.stream.color) # alignment between color and depth
|
||
|
point_cloud = rs.pointcloud()
|
||
|
|
||
|
print("[INFO] loading model...")
|
||
|
PATH_TO_CKPT = r"frozen_inference_graph.pb"
|
||
|
# download model from: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#run-network-in-opencv
|
||
|
|
||
|
# Load the Tensorflow model into memory.
|
||
|
detection_graph = tf.Graph()
|
||
|
with detection_graph.as_default():
|
||
|
od_graph_def = tf.compat.v1.GraphDef()
|
||
|
with tf.compat.v1.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
||
|
serialized_graph = fid.read()
|
||
|
od_graph_def.ParseFromString(serialized_graph)
|
||
|
tf.compat.v1.import_graph_def(od_graph_def, name='')
|
||
|
sess = tf.compat.v1.Session(graph=detection_graph)
|
||
|
|
||
|
# Input tensor is the image
|
||
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||
|
# Output tensors are the detection boxes, scores, and classes
|
||
|
# Each box represents a part of the image where a particular object was detected
|
||
|
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
||
|
# Each score represents level of confidence for each of the objects.
|
||
|
# The score is shown on the result image, together with the class label.
|
||
|
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
||
|
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
||
|
# Number of objects detected
|
||
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
||
|
# code source of tensorflow model loading: https://www.geeksforgeeks.org/ml-training-image-classifier-using-tensorflow-object-detection-api/
|
||
|
|
||
|
while True:
|
||
|
frames = pipeline.wait_for_frames()
|
||
|
frames = aligned_stream.process(frames)
|
||
|
depth_frame = frames.get_depth_frame()
|
||
|
color_frame = frames.get_color_frame()
|
||
|
points = point_cloud.calculate(depth_frame)
|
||
|
verts = np.asanyarray(points.get_vertices()).view(np.float32).reshape(-1, W, 3) # xyz
|
||
|
|
||
|
# Convert images to numpy arrays
|
||
|
color_image = np.asanyarray(color_frame.get_data())
|
||
|
scaled_size = (int(W), int(H))
|
||
|
# expand image dimensions to have shape: [1, None, None, 3]
|
||
|
# i.e. a single-column array, where each item in the column has the pixel RGB value
|
||
|
image_expanded = np.expand_dims(color_image, axis=0)
|
||
|
# Perform the actual detection by running the model with the image as input
|
||
|
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],
|
||
|
feed_dict={image_tensor: image_expanded})
|
||
|
|
||
|
boxes = np.squeeze(boxes)
|
||
|
classes = np.squeeze(classes).astype(np.int32)
|
||
|
scores = np.squeeze(scores)
|
||
|
|
||
|
print("[INFO] drawing bounding box on detected objects...")
|
||
|
print("[INFO] each detected object has a unique color")
|
||
|
|
||
|
for idx in range(int(num)):
|
||
|
class_ = classes[idx]
|
||
|
score = scores[idx]
|
||
|
box = boxes[idx]
|
||
|
print(" [DEBUG] class : ", class_, "idx : ", idx, "num : ", num)
|
||
|
|
||
|
if score > 0.8 and class_ == 1: # 1 for human
|
||
|
left = box[1] * W
|
||
|
top = box[0] * H
|
||
|
right = box[3] * W
|
||
|
bottom = box[2] * H
|
||
|
|
||
|
width = right - left
|
||
|
height = bottom - top
|
||
|
bbox = (int(left), int(top), int(width), int(height))
|
||
|
p1 = (int(bbox[0]), int(bbox[1]))
|
||
|
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
|
||
|
# draw box
|
||
|
cv2.rectangle(color_image, p1, p2, (255,0,0), 2, 1)
|
||
|
|
||
|
# x,y,z of bounding box
|
||
|
obj_points = verts[int(bbox[1]):int(bbox[1] + bbox[3]), int(bbox[0]):int(bbox[0] + bbox[2])].reshape(-1, 3)
|
||
|
zs = obj_points[:, 2]
|
||
|
|
||
|
z = np.median(zs)
|
||
|
|
||
|
ys = obj_points[:, 1]
|
||
|
ys = np.delete(ys, np.where(
|
||
|
(zs < z - 1) | (zs > z + 1))) # take only y for close z to prevent including background
|
||
|
|
||
|
my = np.amin(ys, initial=1)
|
||
|
My = np.amax(ys, initial=-1)
|
||
|
|
||
|
height = (My - my) # add next to rectangle print of height using cv library
|
||
|
height = float("{:.2f}".format(height))
|
||
|
print("[INFO] object height is: ", height, "[m]")
|
||
|
height_txt = str(height) + "[m]"
|
||
|
|
||
|
# Write some Text
|
||
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
||
|
bottomLeftCornerOfText = (p1[0], p1[1] + 20)
|
||
|
fontScale = 1
|
||
|
fontColor = (255, 255, 255)
|
||
|
lineType = 2
|
||
|
cv2.putText(color_image, height_txt,
|
||
|
bottomLeftCornerOfText,
|
||
|
font,
|
||
|
fontScale,
|
||
|
fontColor,
|
||
|
lineType)
|
||
|
|
||
|
# Show images
|
||
|
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
|
||
|
cv2.imshow('RealSense', color_image)
|
||
|
cv2.waitKey(1)
|
||
|
|
||
|
# Stop streaming
|
||
|
pipeline.stop()
|