You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							132 lines
						
					
					
						
							5.1 KiB
						
					
					
				
			
		
		
	
	
							132 lines
						
					
					
						
							5.1 KiB
						
					
					
				import pyrealsense2 as rs
 | 
						|
import numpy as np
 | 
						|
import cv2
 | 
						|
import tensorflow as tf
 | 
						|
 | 
						|
W = 848
 | 
						|
H = 480
 | 
						|
 | 
						|
# Configure depth and color streams
 | 
						|
pipeline = rs.pipeline()
 | 
						|
config = rs.config()
 | 
						|
config.enable_stream(rs.stream.depth, W, H, rs.format.z16, 30)
 | 
						|
config.enable_stream(rs.stream.color, W, H, rs.format.bgr8, 30)
 | 
						|
 | 
						|
 | 
						|
print("[INFO] start streaming...")
 | 
						|
pipeline.start(config)
 | 
						|
 | 
						|
aligned_stream = rs.align(rs.stream.color) # alignment between color and depth
 | 
						|
point_cloud = rs.pointcloud()
 | 
						|
 | 
						|
print("[INFO] loading model...")
 | 
						|
PATH_TO_CKPT = r"frozen_inference_graph.pb"
 | 
						|
# download model from: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#run-network-in-opencv
 | 
						|
 | 
						|
# Load the Tensorflow model into memory.
 | 
						|
detection_graph = tf.Graph()
 | 
						|
with detection_graph.as_default():
 | 
						|
    od_graph_def = tf.compat.v1.GraphDef()
 | 
						|
    with tf.compat.v1.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
 | 
						|
        serialized_graph = fid.read()
 | 
						|
        od_graph_def.ParseFromString(serialized_graph)
 | 
						|
        tf.compat.v1.import_graph_def(od_graph_def, name='')
 | 
						|
    sess = tf.compat.v1.Session(graph=detection_graph)
 | 
						|
 | 
						|
# Input tensor is the image
 | 
						|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
 | 
						|
# Output tensors are the detection boxes, scores, and classes
 | 
						|
# Each box represents a part of the image where a particular object was detected
 | 
						|
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
 | 
						|
# Each score represents level of confidence for each of the objects.
 | 
						|
# The score is shown on the result image, together with the class label.
 | 
						|
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
 | 
						|
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
 | 
						|
# Number of objects detected
 | 
						|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
 | 
						|
# code source of tensorflow model loading: https://www.geeksforgeeks.org/ml-training-image-classifier-using-tensorflow-object-detection-api/
 | 
						|
 | 
						|
while True:
 | 
						|
    frames = pipeline.wait_for_frames()
 | 
						|
    frames = aligned_stream.process(frames)
 | 
						|
    depth_frame = frames.get_depth_frame()
 | 
						|
    color_frame = frames.get_color_frame()
 | 
						|
    points = point_cloud.calculate(depth_frame)
 | 
						|
    verts = np.asanyarray(points.get_vertices()).view(np.float32).reshape(-1, W, 3)  # xyz
 | 
						|
 | 
						|
    # Convert images to numpy arrays
 | 
						|
    color_image = np.asanyarray(color_frame.get_data())
 | 
						|
    scaled_size = (int(W), int(H))
 | 
						|
    # expand image dimensions to have shape: [1, None, None, 3]
 | 
						|
    # i.e. a single-column array, where each item in the column has the pixel RGB value
 | 
						|
    image_expanded = np.expand_dims(color_image, axis=0)
 | 
						|
    # Perform the actual detection by running the model with the image as input
 | 
						|
    (boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],
 | 
						|
                                             feed_dict={image_tensor: image_expanded})
 | 
						|
 | 
						|
    boxes = np.squeeze(boxes)
 | 
						|
    classes = np.squeeze(classes).astype(np.int32)
 | 
						|
    scores = np.squeeze(scores)
 | 
						|
 | 
						|
    print("[INFO] drawing bounding box on detected objects...")
 | 
						|
    print("[INFO] each detected object has a unique color")
 | 
						|
 | 
						|
    for idx in range(int(num)):
 | 
						|
        class_ = classes[idx]
 | 
						|
        score = scores[idx]
 | 
						|
        box = boxes[idx]
 | 
						|
        print(" [DEBUG] class : ", class_, "idx : ", idx, "num : ", num)
 | 
						|
 | 
						|
        if score > 0.8 and class_ == 1: # 1 for human
 | 
						|
            left = box[1] * W
 | 
						|
            top = box[0] * H
 | 
						|
            right = box[3] * W
 | 
						|
            bottom = box[2] * H
 | 
						|
 | 
						|
            width = right - left
 | 
						|
            height = bottom - top
 | 
						|
            bbox = (int(left), int(top), int(width), int(height))
 | 
						|
            p1 = (int(bbox[0]), int(bbox[1]))
 | 
						|
            p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
 | 
						|
            # draw box
 | 
						|
            cv2.rectangle(color_image, p1, p2, (255,0,0), 2, 1)
 | 
						|
 | 
						|
            # x,y,z of bounding box
 | 
						|
            obj_points = verts[int(bbox[1]):int(bbox[1] + bbox[3]), int(bbox[0]):int(bbox[0] + bbox[2])].reshape(-1, 3)
 | 
						|
            zs = obj_points[:, 2]
 | 
						|
 | 
						|
            z = np.median(zs)
 | 
						|
 | 
						|
            ys = obj_points[:, 1]
 | 
						|
            ys = np.delete(ys, np.where(
 | 
						|
                (zs < z - 1) | (zs > z + 1)))  # take only y for close z to prevent including background
 | 
						|
 | 
						|
            my = np.amin(ys, initial=1)
 | 
						|
            My = np.amax(ys, initial=-1)
 | 
						|
 | 
						|
            height = (My - my)  # add next to rectangle print of height using cv library
 | 
						|
            height = float("{:.2f}".format(height))
 | 
						|
            print("[INFO] object height is: ", height, "[m]")
 | 
						|
            height_txt = str(height) + "[m]"
 | 
						|
 | 
						|
            # Write some Text
 | 
						|
            font = cv2.FONT_HERSHEY_SIMPLEX
 | 
						|
            bottomLeftCornerOfText = (p1[0], p1[1] + 20)
 | 
						|
            fontScale = 1
 | 
						|
            fontColor = (255, 255, 255)
 | 
						|
            lineType = 2
 | 
						|
            cv2.putText(color_image, height_txt,
 | 
						|
                        bottomLeftCornerOfText,
 | 
						|
                        font,
 | 
						|
                        fontScale,
 | 
						|
                        fontColor,
 | 
						|
                        lineType)
 | 
						|
 | 
						|
    # Show images
 | 
						|
    cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
 | 
						|
    cv2.imshow('RealSense', color_image)
 | 
						|
    cv2.waitKey(1)
 | 
						|
 | 
						|
# Stop streaming
 | 
						|
pipeline.stop()
 |