You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

132 lines
5.1 KiB

import pyrealsense2 as rs
import numpy as np
import cv2
import tensorflow as tf
W = 848
H = 480
# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, W, H, rs.format.z16, 30)
config.enable_stream(rs.stream.color, W, H, rs.format.bgr8, 30)
print("[INFO] start streaming...")
pipeline.start(config)
aligned_stream = rs.align(rs.stream.color) # alignment between color and depth
point_cloud = rs.pointcloud()
print("[INFO] loading model...")
PATH_TO_CKPT = r"frozen_inference_graph.pb"
# download model from: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#run-network-in-opencv
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.compat.v1.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.compat.v1.import_graph_def(od_graph_def, name='')
sess = tf.compat.v1.Session(graph=detection_graph)
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# code source of tensorflow model loading: https://www.geeksforgeeks.org/ml-training-image-classifier-using-tensorflow-object-detection-api/
while True:
frames = pipeline.wait_for_frames()
frames = aligned_stream.process(frames)
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
points = point_cloud.calculate(depth_frame)
verts = np.asanyarray(points.get_vertices()).view(np.float32).reshape(-1, W, 3) # xyz
# Convert images to numpy arrays
color_image = np.asanyarray(color_frame.get_data())
scaled_size = (int(W), int(H))
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
image_expanded = np.expand_dims(color_image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
boxes = np.squeeze(boxes)
classes = np.squeeze(classes).astype(np.int32)
scores = np.squeeze(scores)
print("[INFO] drawing bounding box on detected objects...")
print("[INFO] each detected object has a unique color")
for idx in range(int(num)):
class_ = classes[idx]
score = scores[idx]
box = boxes[idx]
print(" [DEBUG] class : ", class_, "idx : ", idx, "num : ", num)
if score > 0.8 and class_ == 1: # 1 for human
left = box[1] * W
top = box[0] * H
right = box[3] * W
bottom = box[2] * H
width = right - left
height = bottom - top
bbox = (int(left), int(top), int(width), int(height))
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
# draw box
cv2.rectangle(color_image, p1, p2, (255,0,0), 2, 1)
# x,y,z of bounding box
obj_points = verts[int(bbox[1]):int(bbox[1] + bbox[3]), int(bbox[0]):int(bbox[0] + bbox[2])].reshape(-1, 3)
zs = obj_points[:, 2]
z = np.median(zs)
ys = obj_points[:, 1]
ys = np.delete(ys, np.where(
(zs < z - 1) | (zs > z + 1))) # take only y for close z to prevent including background
my = np.amin(ys, initial=1)
My = np.amax(ys, initial=-1)
height = (My - my) # add next to rectangle print of height using cv library
height = float("{:.2f}".format(height))
print("[INFO] object height is: ", height, "[m]")
height_txt = str(height) + "[m]"
# Write some Text
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (p1[0], p1[1] + 20)
fontScale = 1
fontColor = (255, 255, 255)
lineType = 2
cv2.putText(color_image, height_txt,
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
lineType)
# Show images
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RealSense', color_image)
cv2.waitKey(1)
# Stop streaming
pipeline.stop()