feat: visualization of the 3d follow verctor

main
Artem-Darius Weber 3 months ago
parent 6795d683f2
commit e497b16a78

@ -17,6 +17,9 @@ class TargetFollower:
for info in detections: for info in detections:
print(info) print(info)
def get_target(self):
return self.target
def select_target(self, class_name, nearest=False): def select_target(self, class_name, nearest=False):
""" """
Выбирает объект по указанному имени класса. Выбирает объект по указанному имени класса.

@ -41,7 +41,8 @@ def follow_vector():
return jsonify({ return jsonify({
'detections_info': detections_info, 'detections_info': detections_info,
'follow_vector': follow_vector.tolist() 'follow_vector': follow_vector.tolist(),
'target': follow_vector.get_target()
}) })
except Exception as e: except Exception as e:

Binary file not shown.

After

Width:  |  Height:  |  Size: 325 KiB

@ -1,19 +1,49 @@
import cv2
import numpy as np
from Interfaces.RealSense import RealSenseController from Interfaces.RealSense import RealSenseController
from Server.ServerProvider import RealSenseObjectDetectionServer from Server.ServerProvider import RealSenseObjectDetectionServer
def get_shot(controller): def get_shot(controller):
depth_matrix = controller.acquisition.get_depth_image() depth_matrix = controller.acquisition.get_depth_image()
color_matrix = controller.acquisition.get_color_image() color_matrix = controller.acquisition.get_color_image()
print(f"RS Data: {depth_matrix.shape}") print(f"RS Data: {depth_matrix.shape}")
return depth_matrix, color_matrix return depth_matrix, color_matrix
def draw_boxes_and_vector(image, detections, follow_vector):
for detection in detections:
bbox = detection['bbox']
class_name = detection['class_name']
mean_depth = detection['mean_depth']
x1, y1, x2, y2 = bbox
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
label = f"{class_name}: {mean_depth:.2f} cm"
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
img_center = (image.shape[1] // 2, image.shape[0] // 2)
vector_endpoint = (int(img_center[0] + follow_vector[0]), int(img_center[1] + follow_vector[1]))
cv2.arrowedLine(image, img_center, vector_endpoint, (0, 0, 255), 2, tipLength=0.3)
return image
def save_results(image, depth_matrix, filename="output_image.png", depth_filename="depth_matrix.npy"):
cv2.imwrite(filename, image)
print(f"Image saved as {filename}")
np.save(depth_filename, depth_matrix)
print(f"Depth matrix saved as {depth_filename}")
if __name__ == "__main__": if __name__ == "__main__":
controller = RealSenseController() controller = RealSenseController()
interface = RealSenseObjectDetectionServer() interface = RealSenseObjectDetectionServer()
depth_matrix, color_matrix = get_shot(controller) depth_matrix, color_matrix = get_shot(controller)
response = interface.send_images(color_matrix, depth_matrix) response = interface.send_images(color_matrix, depth_matrix)
if response: if response:
print("Ответ сервера:", response) print("Ответ сервера:", response)
detections_info = response.get("detections_info", [])
follow_vector = response.get("follow_vector", [0, 0, 0])
color_matrix_with_boxes = draw_boxes_and_vector(color_matrix.copy(), detections_info, follow_vector)
save_results(color_matrix_with_boxes, depth_matrix)

File diff suppressed because one or more lines are too long
Loading…
Cancel
Save