You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

45 lines
1.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import cv2
from ultralytics import YOLO
import numpy as np
import base64
class DataProcessor:
def __init__(self, model_path='./../app/models/yolov9e_object_classification.pt'):
self.model = YOLO(model_path)
def __decode_image_from_base64(self, data, color=True):
decoded = base64.b64decode(data)
nparr = np.frombuffer(decoded, np.uint8)
return cv2.imdecode(nparr, cv2.IMREAD_COLOR if color else cv2.IMREAD_GRAYSCALE)
def inline_detection(self, data):
color_matrix = self.__decode_image_from_base64(data['rgb'], color=True)
depth_matrix = self.__decode_image_from_base64(data['depth'], color=False)
if depth_matrix is None or color_matrix is None:
print("Не удалось получить изображения. Проверьте подключение камеры.")
return [], None
results = self.model(color_matrix)
annotated_image = results[0].plot()
detections_info = []
for detection in results[0].boxes:
x1, y1, x2, y2 = map(int, detection.xyxy[0])
class_id = int(detection.cls[0])
class_name = self.model.names[class_id]
depth_values = depth_matrix[y1:y2, x1:x2]
mean_depth = np.mean(depth_values)
detections_info.append({
'class_id': class_id,
'class_name': class_name,
'bbox': [x1, y1, x2, y2],
'mean_depth': float(mean_depth)
})
cv2.putText(annotated_image, f'{class_name} {mean_depth:.2f}m', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
return detections_info, annotated_image