Update agent.py

pull/615/head
Sambhav Dixit 2 months ago committed by GitHub
parent 247ecc65e7
commit 062176fd8a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -781,6 +781,8 @@ class Agent:
or loop_count < self.max_loops or loop_count < self.max_loops
): ):
loop_count += 1 loop_count += 1
# Log step start
current_step_id = f"step_{loop_count}_{uuid.uuid4().hex}"
self.loop_count_print(loop_count, self.max_loops) self.loop_count_print(loop_count, self.max_loops)
print("\n") print("\n")
@ -814,6 +816,8 @@ class Agent:
*response_args, **kwargs *response_args, **kwargs
) )
# Log step metadata
step_meta = self.log_step_metadata(loop_count, task_prompt, response)
# Check if response is a dictionary and has 'choices' key # Check if response is a dictionary and has 'choices' key
if ( if (
isinstance(response, dict) isinstance(response, dict)
@ -832,10 +836,18 @@ class Agent:
# Check and execute tools # Check and execute tools
if self.tools is not None: if self.tools is not None:
print( tool_result = self.parse_and_execute_tools(response)
f"self.tools is not None: {response}" if tool_result:
self.update_tool_usage(
step_meta["step_id"],
tool_result["tool"],
tool_result["args"],
tool_result["response"]
) )
self.parse_and_execute_tools(response)
# Update agent output history
self.agent_output.full_history = self.short_memory.return_history_as_string()
# Log the step metadata # Log the step metadata
logged = self.log_step_metadata( logged = self.log_step_metadata(
@ -1969,13 +1981,27 @@ class Agent:
def log_step_metadata( def log_step_metadata(
self, loop: int, task: str, response: str self, loop: int, task: str, response: str
) -> Step: ) -> Step:
# # # Step Metadata """Log metadata for each step of agent execution."""
# Generate unique step ID
step_id = f"step_{loop}_{uuid.uuid4().hex}"
# Calculate token usage
# full_memory = self.short_memory.return_history_as_string() # full_memory = self.short_memory.return_history_as_string()
# prompt_tokens = self.tokenizer.count_tokens(full_memory) # prompt_tokens = self.tokenizer.count_tokens(full_memory)
# completion_tokens = self.tokenizer.count_tokens(response) # completion_tokens = self.tokenizer.count_tokens(response)
# self.tokenizer.count_tokens(prompt_tokens + completion_tokens) # total_tokens = prompt_tokens + completion_tokens
total_tokens=self.tokenizer.count_tokens(task) + self.tokenizer.count_tokens(response),
# Create memory usage tracking
memory_usage = {
"short_term": len(self.short_memory.messages),
"long_term": self.long_term_memory.count if hasattr(self, 'long_term_memory') else 0
}
step_log = Step( step_log = Step(
step_id=step_id,
time=time.time(),
tokens = total_tokens,
response=AgentChatCompletionResponse( response=AgentChatCompletionResponse(
id=self.agent_id, id=self.agent_id,
agent_name=self.agent_name, agent_name=self.agent_name,
@ -1990,14 +2016,33 @@ class Agent:
), ),
# usage=UsageInfo( # usage=UsageInfo(
# prompt_tokens=prompt_tokens, # prompt_tokens=prompt_tokens,
# total_tokens=total_tokens,
# completion_tokens=completion_tokens, # completion_tokens=completion_tokens,
# total_tokens=total_tokens,
# ), # ),
tool_calls=[],
memory_usage=memory_usage
), ),
) )
# Update total tokens if agent_output exists
if hasattr(self, 'agent_output'):
self.agent_output.total_tokens += step.response.total_tokens
# Add step to agent output tracking
self.step_pool.append(step_log) self.step_pool.append(step_log)
def update_tool_usage(self, step_id: str, tool_name: str, tool_args: dict, tool_response: Any):
"""Update tool usage information for a specific step."""
for step in self.agent_output.steps:
if step.step_id == step_id:
step.response.tool_calls.append({
"tool": tool_name,
"arguments": tool_args,
"response": str(tool_response)
})
break
def _serialize_callable( def _serialize_callable(
self, attr_value: Callable self, attr_value: Callable
) -> Dict[str, Any]: ) -> Dict[str, Any]:

Loading…
Cancel
Save