[CLEANUP] [TESTS]

pull/334/head
Kye 1 year ago
parent 2bc46b8193
commit 1c4f0d8ad5

@ -1,74 +0,0 @@
from typing import Dict, List, Optional
from dataclass import dataclass
from swarms.models import OpenAI
@dataclass
class OpenAIAssistant:
name: str = "OpenAI Assistant"
instructions: str = None
tools: List[Dict] = None
model: str = None
openai_api_key: str = None
temperature: float = 0.5
max_tokens: int = 100
stop: List[str] = None
echo: bool = False
stream: bool = False
log: bool = False
presence: bool = False
dashboard: bool = False
debug: bool = False
max_loops: int = 5
stopping_condition: Optional[str] = None
loop_interval: int = 1
retry_attempts: int = 3
retry_interval: int = 1
interactive: bool = False
dynamic_temperature: bool = False
state: Dict = None
response_filters: List = None
response_filter: Dict = None
response_filter_name: str = None
response_filter_value: str = None
response_filter_type: str = None
response_filter_action: str = None
response_filter_action_value: str = None
response_filter_action_type: str = None
response_filter_action_name: str = None
client = OpenAI()
role: str = "user"
instructions: str = None
def create_assistant(self, task: str):
assistant = self.client.create_assistant(
name=self.name,
instructions=self.instructions,
tools=self.tools,
model=self.model,
)
return assistant
def create_thread(self):
thread = self.client.beta.threads.create()
return thread
def add_message_to_thread(self, thread_id: str, message: str):
message = self.client.beta.threads.add_message(
thread_id=thread_id, role=self.user, content=message
)
return message
def run(self, task: str):
run = self.client.beta.threads.runs.create(
thread_id=self.create_thread().id,
assistant_id=self.create_assistant().id,
instructions=self.instructions,
)
out = self.client.beta.threads.runs.retrieve(
thread_id=run.thread_id, run_id=run.id
)
return out

@ -1,90 +1,215 @@
import pytest
import torch import torch
from unittest.mock import Mock import logging
from swarms.models.huggingface import HuggingFaceLLM from unittest.mock import patch
@pytest.fixture
def mock_torch():
return Mock()
@pytest.fixture
def mock_autotokenizer():
return Mock()
import pytest
@pytest.fixture from swarms.models.huggingface import HuggingfaceLLM
def mock_automodelforcausallm():
return Mock()
# Mock some functions and objects for testing
@pytest.fixture @pytest.fixture
def mock_bitsandbytesconfig(): def mock_huggingface_llm(monkeypatch):
return Mock() # Mock the model and tokenizer creation
def mock_init(
self,
@pytest.fixture model_id,
def hugging_face_llm( device="cpu",
mock_torch, max_length=500,
mock_autotokenizer, quantize=False,
mock_automodelforcausallm, quantization_config=None,
mock_bitsandbytesconfig, verbose=False,
): distributed=False,
HuggingFaceLLM.torch = mock_torch decoding=False,
HuggingFaceLLM.AutoTokenizer = mock_autotokenizer max_workers=5,
HuggingFaceLLM.AutoModelForCausalLM = mock_automodelforcausallm repitition_penalty=1.3,
HuggingFaceLLM.BitsAndBytesConfig = mock_bitsandbytesconfig no_repeat_ngram_size=5,
temperature=0.7,
return HuggingFaceLLM(model_id="test") top_k=40,
top_p=0.8,
):
def test_init( pass
hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm
): # Mock the model loading
assert hugging_face_llm.model_id == "test" def mock_load_model(self):
mock_autotokenizer.from_pretrained.assert_called_once_with("test") pass
mock_automodelforcausallm.from_pretrained.assert_called_once_with(
"test", quantization_config=None # Mock the model generation
def mock_run(self, task):
pass
monkeypatch.setattr(HuggingfaceLLM, "__init__", mock_init)
monkeypatch.setattr(HuggingfaceLLM, "load_model", mock_load_model)
monkeypatch.setattr(HuggingfaceLLM, "run", mock_run)
# Basic tests for initialization and attribute settings
def test_init_huggingface_llm():
llm = HuggingfaceLLM(
model_id="test_model",
device="cuda",
max_length=1000,
quantize=True,
quantization_config={"config_key": "config_value"},
verbose=True,
distributed=True,
decoding=True,
max_workers=3,
repitition_penalty=1.5,
no_repeat_ngram_size=4,
temperature=0.8,
top_k=50,
top_p=0.7,
) )
assert llm.model_id == "test_model"
def test_init_with_quantize( assert llm.device == "cuda"
hugging_face_llm, assert llm.max_length == 1000
mock_autotokenizer, assert llm.quantize == True
mock_automodelforcausallm, assert llm.quantization_config == {"config_key": "config_value"}
mock_bitsandbytesconfig, assert llm.verbose == True
): assert llm.distributed == True
quantization_config = { assert llm.decoding == True
"load_in_4bit": True, assert llm.max_workers == 3
"bnb_4bit_use_double_quant": True, assert llm.repitition_penalty == 1.5
assert llm.no_repeat_ngram_size == 4
assert llm.temperature == 0.8
assert llm.top_k == 50
assert llm.top_p == 0.7
# Test loading the model
def test_load_model(mock_huggingface_llm):
llm = HuggingfaceLLM(model_id="test_model")
llm.load_model()
# Ensure that the load_model function is called
assert True
# Test running the model
def test_run(mock_huggingface_llm):
llm = HuggingfaceLLM(model_id="test_model")
result = llm.run("Test prompt")
# Ensure that the run function is called
assert True
# Test for setting max_length
def test_llm_set_max_length(llm_instance):
new_max_length = 1000
llm_instance.set_max_length(new_max_length)
assert llm_instance.max_length == new_max_length
# Test for setting verbose
def test_llm_set_verbose(llm_instance):
llm_instance.set_verbose(True)
assert llm_instance.verbose is True
# Test for setting distributed
def test_llm_set_distributed(llm_instance):
llm_instance.set_distributed(True)
assert llm_instance.distributed is True
# Test for setting decoding
def test_llm_set_decoding(llm_instance):
llm_instance.set_decoding(True)
assert llm_instance.decoding is True
# Test for setting max_workers
def test_llm_set_max_workers(llm_instance):
new_max_workers = 10
llm_instance.set_max_workers(new_max_workers)
assert llm_instance.max_workers == new_max_workers
# Test for setting repitition_penalty
def test_llm_set_repitition_penalty(llm_instance):
new_repitition_penalty = 1.5
llm_instance.set_repitition_penalty(new_repitition_penalty)
assert llm_instance.repitition_penalty == new_repitition_penalty
# Test for setting no_repeat_ngram_size
def test_llm_set_no_repeat_ngram_size(llm_instance):
new_no_repeat_ngram_size = 6
llm_instance.set_no_repeat_ngram_size(new_no_repeat_ngram_size)
assert llm_instance.no_repeat_ngram_size == new_no_repeat_ngram_size
# Test for setting temperature
def test_llm_set_temperature(llm_instance):
new_temperature = 0.8
llm_instance.set_temperature(new_temperature)
assert llm_instance.temperature == new_temperature
# Test for setting top_k
def test_llm_set_top_k(llm_instance):
new_top_k = 50
llm_instance.set_top_k(new_top_k)
assert llm_instance.top_k == new_top_k
# Test for setting top_p
def test_llm_set_top_p(llm_instance):
new_top_p = 0.9
llm_instance.set_top_p(new_top_p)
assert llm_instance.top_p == new_top_p
# Test for setting quantize
def test_llm_set_quantize(llm_instance):
llm_instance.set_quantize(True)
assert llm_instance.quantize is True
# Test for setting quantization_config
def test_llm_set_quantization_config(llm_instance):
new_quantization_config = {
"load_in_4bit": False,
"bnb_4bit_use_double_quant": False,
"bnb_4bit_quant_type": "nf4", "bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_compute_dtype": torch.bfloat16,
} }
mock_bitsandbytesconfig.return_value = quantization_config llm_instance.set_quantization_config(new_quantization_config)
assert llm_instance.quantization_config == new_quantization_config
HuggingFaceLLM(model_id="test", quantize=True)
# Test for setting model_id
mock_bitsandbytesconfig.assert_called_once_with( def test_llm_set_model_id(llm_instance):
**quantization_config new_model_id = "EleutherAI/gpt-neo-2.7B"
) llm_instance.set_model_id(new_model_id)
mock_autotokenizer.from_pretrained.assert_called_once_with("test") assert llm_instance.model_id == new_model_id
mock_automodelforcausallm.from_pretrained.assert_called_once_with(
"test", quantization_config=quantization_config # Test for setting model
) @patch("swarms.models.huggingface.AutoModelForCausalLM.from_pretrained")
def test_llm_set_model(mock_model, llm_instance):
mock_model.return_value = "mocked model"
def test_generate_text(hugging_face_llm): llm_instance.set_model(mock_model)
prompt_text = "test prompt" assert llm_instance.model == "mocked model"
expected_output = "test output"
hugging_face_llm.tokenizer.encode.return_value = torch.tensor( # Test for setting tokenizer
[0] @patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
) # Mock tensor def test_llm_set_tokenizer(mock_tokenizer, llm_instance):
hugging_face_llm.model.generate.return_value = torch.tensor( mock_tokenizer.return_value = "mocked tokenizer"
[0] llm_instance.set_tokenizer(mock_tokenizer)
) # Mock tensor assert llm_instance.tokenizer == "mocked tokenizer"
hugging_face_llm.tokenizer.decode.return_value = expected_output
# Test for setting logger
output = hugging_face_llm.generate_text(prompt_text) def test_llm_set_logger(llm_instance):
new_logger = logging.getLogger("test_logger")
assert output == expected_output llm_instance.set_logger(new_logger)
assert llm_instance.logger == new_logger
# Test for saving model
@patch("torch.save")
def test_llm_save_model(mock_save, llm_instance):
llm_instance.save_model("path/to/save")
mock_save.assert_called_once()
# Test for print_dashboard
@patch("builtins.print")
def test_llm_print_dashboard(mock_print, llm_instance):
llm_instance.print_dashboard("test task")
mock_print.assert_called()
# Test for __call__ method
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_call(mock_run, llm_instance):
mock_run.return_value = "mocked output"
result = llm_instance("test task")
assert result == "mocked output"

@ -1,7 +1,7 @@
import pytest import pytest
import os import os
from datetime import datetime from datetime import datetime
from swarms.swarms.base import BaseStructure from swarms.structs.base import BaseStructure
class TestBaseStructure: class TestBaseStructure:
Loading…
Cancel
Save