parent
3327e463c6
commit
1df42a3991
@ -0,0 +1,133 @@
|
|||||||
|
import inspect
|
||||||
|
import os
|
||||||
|
import threading
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
|
||||||
|
from swarms import OpenAIChat
|
||||||
|
from swarms.structs.agent import Agent
|
||||||
|
from swarms.structs.autoscaler import AutoScaler
|
||||||
|
from swarms.structs.base import BaseStructure
|
||||||
|
from swarms.structs.base_swarm import AbstractSwarm
|
||||||
|
from swarms.structs.base_workflow import BaseWorkflow
|
||||||
|
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
|
||||||
|
from swarms.structs.conversation import Conversation
|
||||||
|
from swarms.structs.groupchat import GroupChat, GroupChatManager
|
||||||
|
from swarms.structs.model_parallizer import ModelParallelizer
|
||||||
|
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
|
||||||
|
from swarms.structs.nonlinear_workflow import NonlinearWorkflow
|
||||||
|
from swarms.structs.recursive_workflow import RecursiveWorkflow
|
||||||
|
from swarms.structs.schemas import (
|
||||||
|
Artifact,
|
||||||
|
ArtifactUpload,
|
||||||
|
StepInput,
|
||||||
|
TaskInput,
|
||||||
|
)
|
||||||
|
from swarms.structs.sequential_workflow import SequentialWorkflow
|
||||||
|
from swarms.structs.swarm_net import SwarmNetwork
|
||||||
|
from swarms.structs.utils import (
|
||||||
|
distribute_tasks,
|
||||||
|
extract_key_from_json,
|
||||||
|
extract_tokens_from_text,
|
||||||
|
find_agent_by_id,
|
||||||
|
find_token_in_text,
|
||||||
|
parse_tasks,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
model = OpenAIChat(
|
||||||
|
model_name="gpt-4-1106-preview",
|
||||||
|
openai_api_key=api_key,
|
||||||
|
max_tokens=4000,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def process_documentation(
|
||||||
|
item,
|
||||||
|
module: str = "swarms.structs",
|
||||||
|
docs_folder_path: str = "docs/swarms/structs",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Process the documentation for a given class or function using OpenAI model and save it in a Python file.
|
||||||
|
"""
|
||||||
|
doc = inspect.getdoc(item)
|
||||||
|
source = inspect.getsource(item)
|
||||||
|
is_class = inspect.isclass(item)
|
||||||
|
item_type = "Class Name" if is_class else "Name"
|
||||||
|
input_content = (
|
||||||
|
f"{item_type}:"
|
||||||
|
f" {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
||||||
|
f" Code:\n{source}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process with OpenAI model
|
||||||
|
processed_content = model(
|
||||||
|
DOCUMENTATION_WRITER_SOP(input_content, module)
|
||||||
|
)
|
||||||
|
|
||||||
|
doc_content = f"# {item.__name__}\n\n{processed_content}\n"
|
||||||
|
|
||||||
|
# Create the directory if it doesn't exist
|
||||||
|
dir_path = docs_folder_path
|
||||||
|
os.makedirs(dir_path, exist_ok=True)
|
||||||
|
|
||||||
|
# Write the processed documentation to a Python file
|
||||||
|
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.md")
|
||||||
|
with open(file_path, "w") as file:
|
||||||
|
file.write(doc_content)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Processed documentation for {item.__name__}. at {file_path}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main(module: str = "docs/swarms/structs"):
|
||||||
|
items = [
|
||||||
|
Agent,
|
||||||
|
SequentialWorkflow,
|
||||||
|
AutoScaler,
|
||||||
|
Conversation,
|
||||||
|
TaskInput,
|
||||||
|
Artifact,
|
||||||
|
ArtifactUpload,
|
||||||
|
StepInput,
|
||||||
|
SwarmNetwork,
|
||||||
|
ModelParallelizer,
|
||||||
|
MultiAgentCollaboration,
|
||||||
|
AbstractSwarm,
|
||||||
|
GroupChat,
|
||||||
|
GroupChatManager,
|
||||||
|
parse_tasks,
|
||||||
|
find_agent_by_id,
|
||||||
|
distribute_tasks,
|
||||||
|
find_token_in_text,
|
||||||
|
extract_key_from_json,
|
||||||
|
extract_tokens_from_text,
|
||||||
|
ConcurrentWorkflow,
|
||||||
|
RecursiveWorkflow,
|
||||||
|
NonlinearWorkflow,
|
||||||
|
BaseWorkflow,
|
||||||
|
BaseStructure,
|
||||||
|
]
|
||||||
|
|
||||||
|
threads = []
|
||||||
|
for item in items:
|
||||||
|
thread = threading.Thread(
|
||||||
|
target=process_documentation, args=(item,)
|
||||||
|
)
|
||||||
|
threads.append(thread)
|
||||||
|
thread.start()
|
||||||
|
|
||||||
|
# Wait for all threads to complete
|
||||||
|
for thread in threads:
|
||||||
|
thread.join()
|
||||||
|
|
||||||
|
print(f"Documentation generated in {module} directory.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -1,20 +1,36 @@
|
|||||||
from swarms.telemetry.log_all import log_all_calls, log_calls
|
from swarms.telemetry.log_all import log_all_calls, log_calls
|
||||||
|
from swarms.telemetry.sys_info import (
|
||||||
# from swarms.telemetry.posthog_utils import log_activity_posthog
|
get_cpu_info,
|
||||||
|
get_oi_version,
|
||||||
|
get_os_version,
|
||||||
|
get_package_mismatches,
|
||||||
|
get_pip_version,
|
||||||
|
get_python_version,
|
||||||
|
get_ram_info,
|
||||||
|
interpreter_info,
|
||||||
|
system_info,
|
||||||
|
)
|
||||||
from swarms.telemetry.user_utils import (
|
from swarms.telemetry.user_utils import (
|
||||||
|
generate_unique_identifier,
|
||||||
generate_user_id,
|
generate_user_id,
|
||||||
get_machine_id,
|
get_machine_id,
|
||||||
get_system_info,
|
get_system_info,
|
||||||
generate_unique_identifier,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"log_all_calls",
|
"log_all_calls",
|
||||||
"log_calls",
|
"log_calls",
|
||||||
# "log_activity_posthog",
|
|
||||||
"generate_user_id",
|
"generate_user_id",
|
||||||
"get_machine_id",
|
"get_machine_id",
|
||||||
"get_system_info",
|
"get_system_info",
|
||||||
"generate_unique_identifier",
|
"generate_unique_identifier",
|
||||||
|
"get_python_version",
|
||||||
|
"get_pip_version",
|
||||||
|
"get_oi_version",
|
||||||
|
"get_os_version",
|
||||||
|
"get_cpu_info",
|
||||||
|
"get_ram_info",
|
||||||
|
"get_package_mismatches",
|
||||||
|
"interpreter_info",
|
||||||
|
"system_info",
|
||||||
]
|
]
|
||||||
|
@ -1,3 +1,23 @@
|
|||||||
from swarms.tools.tool_func_doc_scraper import scrape_tool_func_docs
|
from swarms.tools.tool_func_doc_scraper import scrape_tool_func_docs
|
||||||
|
from swarms.tools.code_executor import CodeExecutor
|
||||||
|
from swarms.tools.tool_utils import (
|
||||||
|
tool_find_by_name,
|
||||||
|
extract_tool_commands,
|
||||||
|
parse_and_execute_tools,
|
||||||
|
execute_tools,
|
||||||
|
)
|
||||||
|
from swarms.tools.tool import BaseTool, Tool, StructuredTool, tool
|
||||||
|
|
||||||
__all__ = ["scrape_tool_func_docs"]
|
|
||||||
|
__all__ = [
|
||||||
|
"scrape_tool_func_docs",
|
||||||
|
"CodeExecutor",
|
||||||
|
"tool_find_by_name",
|
||||||
|
"extract_tool_commands",
|
||||||
|
"parse_and_execute_tools",
|
||||||
|
"execute_tools",
|
||||||
|
"BaseTool",
|
||||||
|
"Tool",
|
||||||
|
"StructuredTool",
|
||||||
|
"tool",
|
||||||
|
]
|
||||||
|
@ -0,0 +1,111 @@
|
|||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
import subprocess
|
||||||
|
|
||||||
|
|
||||||
|
class CodeExecutor:
|
||||||
|
"""
|
||||||
|
A class for executing code snippets.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
code (str, optional): The code snippet to be executed. Defaults to None.
|
||||||
|
|
||||||
|
Methods:
|
||||||
|
is_python_code(code: str = None) -> bool:
|
||||||
|
Checks if the given code is Python code.
|
||||||
|
|
||||||
|
run_python(code: str = None) -> str:
|
||||||
|
Executes the given Python code and returns the output.
|
||||||
|
|
||||||
|
run(code: str = None) -> str:
|
||||||
|
Executes the given code and returns the output.
|
||||||
|
|
||||||
|
__call__() -> str:
|
||||||
|
Executes the code and returns the output.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, code: str = None):
|
||||||
|
self.code = code
|
||||||
|
|
||||||
|
def is_python_code(self, code: str = None) -> bool:
|
||||||
|
"""
|
||||||
|
Checks if the given code is Python code.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
code (str, optional): The code to be checked. Defaults to None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True if the code is Python code, False otherwise.
|
||||||
|
"""
|
||||||
|
code = code or self.code
|
||||||
|
return code.strip().startswith("python")
|
||||||
|
|
||||||
|
def run_python(self, code: str = None) -> str:
|
||||||
|
"""
|
||||||
|
Executes the given Python code and returns the output.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
code (str, optional): The Python code to be executed. Defaults to None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The output of the code execution.
|
||||||
|
"""
|
||||||
|
code = code or self.code
|
||||||
|
try:
|
||||||
|
# Create a temporary file
|
||||||
|
with tempfile.NamedTemporaryFile(
|
||||||
|
suffix=".py", delete=False
|
||||||
|
) as temp:
|
||||||
|
temp.write(code.encode())
|
||||||
|
temp_filename = temp.name
|
||||||
|
|
||||||
|
# Execute the temporary file
|
||||||
|
output = subprocess.check_output(
|
||||||
|
f"python {temp_filename}",
|
||||||
|
shell=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Delete the temporary file
|
||||||
|
os.remove(temp_filename)
|
||||||
|
|
||||||
|
return output.decode("utf-8")
|
||||||
|
except subprocess.CalledProcessError as error:
|
||||||
|
return error.output.decode("utf-8")
|
||||||
|
except Exception as error:
|
||||||
|
return str(error)
|
||||||
|
|
||||||
|
def run(self, code: str = None) -> str:
|
||||||
|
"""
|
||||||
|
Executes the given code and returns the output.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
code (str, optional): The code to be executed. Defaults to None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The output of the code execution.
|
||||||
|
"""
|
||||||
|
code = code or self.code
|
||||||
|
try:
|
||||||
|
output = subprocess.check_output(
|
||||||
|
code,
|
||||||
|
shell=True,
|
||||||
|
)
|
||||||
|
return output.decode("utf-8")
|
||||||
|
except subprocess.CalledProcessError as e:
|
||||||
|
return e.output.decode("utf-8")
|
||||||
|
except Exception as e:
|
||||||
|
return str(e)
|
||||||
|
|
||||||
|
def __call__(self) -> str:
|
||||||
|
"""
|
||||||
|
Executes the code and returns the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The output of the code execution.
|
||||||
|
"""
|
||||||
|
return self.run()
|
||||||
|
|
||||||
|
|
||||||
|
# model = CodeExecutor()
|
||||||
|
# out = model.run("python3")
|
||||||
|
# print(out)
|
Loading…
Reference in new issue