pull/498/head
Kye Gomez 7 months ago
parent d037593a40
commit 20a994b62f

@ -1,8 +1,8 @@
docs_dir: '.' # replace with the correct path if your documentation files are not in the same directory as mkdocs.yml docs_dir: '.' # replace with the correct path if your documentation files are not in the same directory as mkdocs.yml
site_name: Swarms Documentation site_name: Swarms
site_url: https://swarms.apac.ai site_url: https://docs.swarms.world
site_author: Swarms site_author: Swarms
site_description: Orchestrate Swarms of Agents From Any Framework Like OpenAI, Langchain, and Etc for Real World Workflow Automation. site_description: The Enterprise-Grade Production-Ready Multi-Agent Framework
repo_name: kyegomez/swarms repo_name: kyegomez/swarms
repo_url: https://github.com/kyegomez/swarms repo_url: https://github.com/kyegomez/swarms
edit_uri: https://github.com/kyegomez/swarms/tree/main/docs edit_uri: https://github.com/kyegomez/swarms/tree/main/docs

@ -1,7 +1,5 @@
from swarms.agents.agent_wrapper import agent_wrapper from swarms.agents.agent_wrapper import agent_wrapper
from swarms.agents.base import AbstractAgent from swarms.agents.base import AbstractAgent
from swarms.agents.omni_modal_agent import OmniModalAgent
from swarms.agents.simple_agent import SimpleAgent
from swarms.agents.stopping_conditions import ( from swarms.agents.stopping_conditions import (
check_cancelled, check_cancelled,
check_complete, check_complete,

@ -1,136 +0,0 @@
from swarms.prompts.documentation import DOCUMENTATION_WRITER_SOP
from swarms.prompts.tests import TEST_WRITER_SOP_PROMPT
from swarms.structs.agent import Agent
class UnitTesterAgent:
"""
This class represents a unit testing agent responsible for generating unit tests for the swarms package.
Attributes:
- llm: The low-level model used by the agent.
- agent_name (str): The name of the agent.
- agent_description (str): The description of the agent.
- max_loops (int): The maximum number of loops the agent can run.
- SOP_PROMPT: The system output prompt used by the agent.
- agent: The underlying agent object used for running tasks.
Methods:
- run(task: str, *args, **kwargs) -> str: Run the agent with the given task and return the response.
"""
def __init__(
self,
llm,
agent_name: str = "Unit Testing Agent",
agent_description: str = "This agent is responsible for generating unit tests for the swarms package.",
max_loops: int = 1,
sop: str = None,
module: str = None,
path: str = None,
autosave: bool = True,
*args,
**kwargs,
):
super().__init__()
self.llm = llm
self.agent_name = agent_name
self.agent_description = agent_description
self.max_loops = max_loops
self.sop = sop
self.module = module
self.path = path
self.autosave = autosave
self.agent = Agent(
llm=llm,
agent_name=agent_name,
agent_description=agent_description,
autosave=self.autosave,
system_prompt=agent_description,
max_loops=max_loops,
*args,
**kwargs,
)
def run(self, task: str, module: str, path: str, *args, **kwargs):
"""
Run the agent with the given task.
Args:
- task (str): The task to run the agent with.
Returns:
- str: The response from the agent.
"""
return self.agent.run(
TEST_WRITER_SOP_PROMPT(task, self.module, self.path),
*args,
**kwargs,
)
class DocumentorAgent:
"""
This class represents a documentor agent responsible for generating unit tests for the swarms package.
Attributes:
- llm: The low-level model used by the agent.
- agent_name (str): The name of the agent.
- agent_description (str): The description of the agent.
- max_loops (int): The maximum number of loops the agent can run.
- SOP_PROMPT: The system output prompt used by the agent.
- agent: The underlying agent object used for running tasks.
Methods:
- run(task: str, *args, **kwargs) -> str: Run the agent with the given task and return the response.
"""
def __init__(
self,
llm,
agent_name: str = "Documentor Agent",
agent_description: str = "This agent is responsible for generating unit tests for the swarms package.",
max_loops: int = 1,
sop: str = None,
module: str = None,
path: str = None,
autosave: bool = True,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.llm = llm
self.agent_name = agent_name
self.agent_description = agent_description
self.max_loops = max_loops
self.sop = sop
self.module = module
self.path = path
self.autosave = autosave
self.agent = Agent(
llm=llm,
agent_name=agent_name,
agent_description=agent_description,
autosave=self.autosave,
system_prompt=agent_description,
max_loops=max_loops,
*args,
**kwargs,
)
def run(self, task: str, module: str, path: str, *args, **kwargs):
"""
Run the agent with the given task.
Args:
- task (str): The task to run the agent with.
Returns:
- str: The response from the agent.
"""
return self.agent.run(
DOCUMENTATION_WRITER_SOP(task, self.module) * args,
**kwargs,
)

@ -1,100 +0,0 @@
from langchain.base_language import BaseLanguageModel
from langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator import (
load_response_generator,
)
from langchain_experimental.autonomous_agents.hugginggpt.task_executor import (
TaskExecutor,
)
from langchain_experimental.autonomous_agents.hugginggpt.task_planner import (
load_chat_planner,
)
from transformers import load_tool
from swarms.structs.agent import Agent
from swarms.utils.loguru_logger import logger
class OmniModalAgent(Agent):
"""
OmniModalAgent
LLM -> Plans -> Tasks -> Tools -> Response
Architecture:
1. LLM: Language Model
2. Chat Planner: Plans
3. Task Executor: Tasks
4. Tools: Tools
Args:
llm (BaseLanguageModel): Language Model
tools (List[BaseTool]): List of tools
Returns:
str: response
Usage:
from swarms import OmniModalAgent, OpenAIChat,
llm = OpenAIChat()
agent = OmniModalAgent(llm)
response = agent.run("Hello, how are you? Create an image of how your are doing!")
"""
def __init__(
self,
llm: BaseLanguageModel,
verbose: bool = False,
*args,
**kwargs,
):
super().__init__(llm=llm, *args, **kwargs)
self.llm = llm
self.verbose = verbose
print("Loading tools...")
self.tools = [
load_tool(tool_name)
for tool_name in [
"document-question-answering",
"image-captioning",
"image-question-answering",
"image-segmentation",
"speech-to-text",
"summarization",
"text-classification",
"text-question-answering",
"translation",
"huggingface-tools/text-to-image",
"huggingface-tools/text-to-video",
"text-to-speech",
"huggingface-tools/text-download",
"huggingface-tools/image-transformation",
]
]
# Load the chat planner and response generator
self.chat_planner = load_chat_planner(llm)
self.response_generator = load_response_generator(llm)
self.task_executor = TaskExecutor
self.history = []
def run(self, task: str) -> str:
"""Run the OmniAgent"""
try:
plan = self.chat_planner.plan(
inputs={
"input": task,
"hf_tools": self.tools,
}
)
self.task_executor = TaskExecutor(plan)
self.task_executor.run()
response = self.response_generator.generate(
{"task_execution": self.task_executor}
)
return response
except Exception as error:
logger.error(f"Error running the agent: {error}")
return f"Error running the agent: {error}"

@ -1,105 +0,0 @@
import importlib
import pkgutil
from typing import Any
import swarms.models
from swarms.models.base_llm import BaseLLM
from swarms.structs.conversation import Conversation
def get_llm_by_name(name: str):
"""
Searches all the modules exported from the 'swarms.models' path for a class with the given name.
Args:
name (str): The name of the class to search for.
Returns:
type: The class with the given name, or None if no such class is found.
"""
for importer, modname, ispkg in pkgutil.iter_modules(
swarms.models.__path__
):
module = importlib.import_module(f"swarms.models.{modname}")
if hasattr(module, name):
return getattr(module, name)
return None
# Run the language model in a loop for n iterations
def SimpleAgent(
llm: BaseLLM = None, iters: Any = "automatic", *args, **kwargs
):
"""
A simple agent that interacts with a language model.
Args:
llm (BaseLLM): The language model to use for generating responses.
iters (Any): The number of iterations or "automatic" to run indefinitely.
*args: Additional positional arguments to pass to the language model.
**kwargs: Additional keyword arguments to pass to the language model.
Raises:
Exception: If the language model is not defined or cannot be found.
Returns:
None
"""
try:
if llm is None:
raise Exception("Language model not defined")
if isinstance(llm, str):
llm = get_llm_by_name(llm)
if llm is None:
raise Exception(f"Language model {llm} not found")
llm = llm(*args, **kwargs)
except Exception as error:
print(f"[ERROR][SimpleAgent] {error}")
raise error
try:
conv = Conversation(*args, **kwargs)
if iters == "automatic":
i = 0
while True:
user_input = input("\033[91mUser:\033[0m ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task, *args, **kwargs)
conv.add("assistant", out)
print(
f"\033[94mAssistant:\033[0m {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
i += 1
else:
for i in range(iters):
user_input = input("\033[91mUser:\033[0m ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task, *args, **kwargs)
conv.add("assistant", out)
print(
f"\033[94mAssistant:\033[0m {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
except Exception as error:
print(f"[ERROR][SimpleAgentConversation] {error}")
raise error
except KeyboardInterrupt:
print("[INFO][SimpleAgentConversation] Keyboard interrupt")
conv.export_conversation("conversation.txt")
raise KeyboardInterrupt
Loading…
Cancel
Save