docs: update quickstart with simplified YAML configuration and example.py

pull/828/head
ascender1729 1 week ago
parent 05ec792e18
commit 2dfe8a5dda

@ -70,51 +70,51 @@ The `create_agents_from_yaml` function works by reading agent configurations fro
```yaml ```yaml
agents: agents:
- agent_name: "Financial-Analysis-Agent" - agent_name: "Financial-Analysis-Agent"
model: system_prompt: "You are a financial analysis expert. Analyze market trends and provide investment recommendations."
openai_api_key: "your_openai_api_key" model_name: "claude-3-opus-20240229"
model_name: "gpt-4o-mini"
temperature: 0.1
max_tokens: 2000
system_prompt: "financial_agent_sys_prompt"
max_loops: 1 max_loops: 1
autosave: true autosave: false
dashboard: false dashboard: false
verbose: true verbose: false
dynamic_temperature_enabled: true dynamic_temperature_enabled: false
saved_state_path: "finance_agent.json"
user_name: "swarms_corp" user_name: "swarms_corp"
retry_attempts: 1 retry_attempts: 1
context_length: 200000 context_length: 200000
return_step_meta: false return_step_meta: false
output_type: "str" output_type: "str"
task: "How can I establish a ROTH IRA to buy stocks and get a tax break?" task: "Analyze tech stocks for 2024 investment strategy. Provide detailed analysis and recommendations."
- agent_name: "Stock-Analysis-Agent" - agent_name: "Risk-Analysis-Agent"
model: system_prompt: "You are a risk analysis expert. Evaluate investment risks and provide mitigation strategies."
openai_api_key: "your_openai_api_key" model_name: "claude-3-opus-20240229"
model_name: "gpt-4o-mini" max_loops: 1
temperature: 0.2 autosave: false
max_tokens: 1500
system_prompt: "stock_agent_sys_prompt"
max_loops: 2
autosave: true
dashboard: false dashboard: false
verbose: true verbose: false
dynamic_temperature_enabled: false dynamic_temperature_enabled: false
saved_state_path: "stock_agent.json" user_name: "swarms_corp"
user_name: "stock_user" retry_attempts: 1
retry_attempts: 3
context_length: 150000 context_length: 150000
return_step_meta: true return_step_meta: false
output_type: "json" output_type: "str"
task: "What is the best strategy for long-term stock investment?" task: "Conduct a comprehensive risk analysis of the top 5 tech companies in 2024. Include risk factors and mitigation strategies."
swarm_architecture:
name: "Financial Analysis Swarm"
description: "A swarm for comprehensive financial and risk analysis"
max_loops: 1
swarm_type: "SequentialWorkflow"
task: "Analyze tech stocks and their associated risks for 2024 investment strategy"
autosave: false
return_json: true
``` ```
### Key Configuration Fields: ### Key Configuration Fields:
- **agent_name**: Name of the agent. - **agent_name**: Name of the agent.
- **model**: Defines the language model settings (e.g., API key, model name, temperature, and max tokens).
- **system_prompt**: The system prompt used to guide the agent's behavior. - **system_prompt**: The system prompt used to guide the agent's behavior.
- **task**: (Optional) Task for the agent to execute once created. - **model_name**: The language model to use (e.g., claude-3-opus-20240229).
- **task**: Task for the agent to execute.
- **swarm_architecture**: (Optional) Configuration for swarm behavior.
--- ---
@ -122,49 +122,23 @@ agents:
Now, create the main Python script that will use the `create_agents_from_yaml` function. Now, create the main Python script that will use the `create_agents_from_yaml` function.
### `main.py`: ### `example.py`:
```python ```python
import os from swarms.agents.create_agents_from_yaml import create_agents_from_yaml
from dotenv import load_dotenv
from loguru import logger
from swarm_models import OpenAIChat
from swarms.agents.create_agents_from_yaml import ( # Create agents and get task results
create_agents_from_yaml,
)
# Load environment variables
load_dotenv()
# Path to your YAML file
yaml_file = "agents.yaml"
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
try:
# Create agents and run tasks (using 'both' to return agents and task results)
task_results = create_agents_from_yaml( task_results = create_agents_from_yaml(
model=model, yaml_file=yaml_file, return_type="tasks" yaml_file="agents_config.yaml",
return_type="run_swarm"
) )
logger.info(f"Results from agents: {task_results}") print(task_results)
except Exception as e:
logger.error(f"An error occurred: {e}")
``` ```
### Example Run: ### Example Run:
```bash ```bash
python main.py python example.py
``` ```
This will: This will:

Loading…
Cancel
Save