docs: update quickstart with simplified YAML configuration and example.py

pull/828/head
ascender1729 1 week ago
parent 05ec792e18
commit 2dfe8a5dda

@ -70,51 +70,51 @@ The `create_agents_from_yaml` function works by reading agent configurations fro
```yaml
agents:
- agent_name: "Financial-Analysis-Agent"
model:
openai_api_key: "your_openai_api_key"
model_name: "gpt-4o-mini"
temperature: 0.1
max_tokens: 2000
system_prompt: "financial_agent_sys_prompt"
system_prompt: "You are a financial analysis expert. Analyze market trends and provide investment recommendations."
model_name: "claude-3-opus-20240229"
max_loops: 1
autosave: true
autosave: false
dashboard: false
verbose: true
dynamic_temperature_enabled: true
saved_state_path: "finance_agent.json"
verbose: false
dynamic_temperature_enabled: false
user_name: "swarms_corp"
retry_attempts: 1
context_length: 200000
return_step_meta: false
output_type: "str"
task: "How can I establish a ROTH IRA to buy stocks and get a tax break?"
- agent_name: "Stock-Analysis-Agent"
model:
openai_api_key: "your_openai_api_key"
model_name: "gpt-4o-mini"
temperature: 0.2
max_tokens: 1500
system_prompt: "stock_agent_sys_prompt"
max_loops: 2
autosave: true
task: "Analyze tech stocks for 2024 investment strategy. Provide detailed analysis and recommendations."
- agent_name: "Risk-Analysis-Agent"
system_prompt: "You are a risk analysis expert. Evaluate investment risks and provide mitigation strategies."
model_name: "claude-3-opus-20240229"
max_loops: 1
autosave: false
dashboard: false
verbose: true
verbose: false
dynamic_temperature_enabled: false
saved_state_path: "stock_agent.json"
user_name: "stock_user"
retry_attempts: 3
user_name: "swarms_corp"
retry_attempts: 1
context_length: 150000
return_step_meta: true
output_type: "json"
task: "What is the best strategy for long-term stock investment?"
return_step_meta: false
output_type: "str"
task: "Conduct a comprehensive risk analysis of the top 5 tech companies in 2024. Include risk factors and mitigation strategies."
swarm_architecture:
name: "Financial Analysis Swarm"
description: "A swarm for comprehensive financial and risk analysis"
max_loops: 1
swarm_type: "SequentialWorkflow"
task: "Analyze tech stocks and their associated risks for 2024 investment strategy"
autosave: false
return_json: true
```
### Key Configuration Fields:
- **agent_name**: Name of the agent.
- **model**: Defines the language model settings (e.g., API key, model name, temperature, and max tokens).
- **system_prompt**: The system prompt used to guide the agent's behavior.
- **task**: (Optional) Task for the agent to execute once created.
- **model_name**: The language model to use (e.g., claude-3-opus-20240229).
- **task**: Task for the agent to execute.
- **swarm_architecture**: (Optional) Configuration for swarm behavior.
---
@ -122,49 +122,23 @@ agents:
Now, create the main Python script that will use the `create_agents_from_yaml` function.
### `main.py`:
### `example.py`:
```python
import os
from dotenv import load_dotenv
from loguru import logger
from swarm_models import OpenAIChat
from swarms.agents.create_agents_from_yaml import create_agents_from_yaml
from swarms.agents.create_agents_from_yaml import (
create_agents_from_yaml,
)
# Load environment variables
load_dotenv()
# Path to your YAML file
yaml_file = "agents.yaml"
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
try:
# Create agents and run tasks (using 'both' to return agents and task results)
# Create agents and get task results
task_results = create_agents_from_yaml(
model=model, yaml_file=yaml_file, return_type="tasks"
yaml_file="agents_config.yaml",
return_type="run_swarm"
)
logger.info(f"Results from agents: {task_results}")
except Exception as e:
logger.error(f"An error occurred: {e}")
print(task_results)
```
### Example Run:
```bash
python main.py
python example.py
```
This will:

Loading…
Cancel
Save