Former-commit-id: 199aa904b7
pull/47/head
Kye 1 year ago
parent b2fd6250b5
commit 36f026344f

@ -1,24 +1,22 @@
from __future__ import annotations
from typing import List, Optional
from pydantic import ValidationError
from swarms.agents.utils.Agent import AgentOutputParser
from swarms.agents.utils.human_input import HumanInputRun
from swarms.agents.prompts.prompt_generator import FINISH_NAME
from langchain.chains.llm import LLMChain
from langchain.chat_models.base import BaseChatModel
from langchain.memory import ChatMessageHistory
from langchain.schema import (
BaseChatMessageHistory,
Document,
)
from langchain.schema import (BaseChatMessageHistory, Document,)
from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
from langchain.tools.base import BaseTool
from langchain.tools.human.tool import HumanInputRun
from langchain.vectorstores.base import VectorStoreRetriever
from langchain_experimental.autonomous_agents.autogpt.prompt_generator import (
FINISH_NAME,
)
from pydantic import ValidationError
from swarms.agents.utils.Agent import AgentOutputParser
class Agent:

@ -0,0 +1,43 @@
import requests
import os
class Anthropic:
"""Anthropic large language models."""
def __init__(self, model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None):
self.model = model
self.max_tokens_to_sample = max_tokens_to_sample
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.streaming = streaming
self.default_request_timeout = default_request_timeout or 600
self.anthropic_api_url = os.getenv("ANTHROPIC_API_URL", "https://api.anthropic.com")
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
def _default_params(self):
"""Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return d
def _call(self, prompt, stop=None):
"""Call out to Anthropic's completion endpoint."""
stop = stop or []
params = self._default_params()
headers = {"Authorization": f"Bearer {self.anthropic_api_key}"}
data = {
"prompt": prompt,
"stop_sequences": stop,
**params
}
response = requests.post(f"{self.anthropic_api_url}/completions", headers=headers, json=data, timeout=self.default_request_timeout)
return response.json().get("completion")

@ -0,0 +1,186 @@
import json
from typing import List
from langchain.tools.base import BaseTool
FINISH_NAME = "finish"
class PromptGenerator:
"""A class for generating custom prompt strings.
Does this based on constraints, commands, resources, and performance evaluations.
"""
def __init__(self) -> None:
"""Initialize the PromptGenerator object.
Starts with empty lists of constraints, commands, resources,
and performance evaluations.
"""
self.constraints: List[str] = []
self.commands: List[BaseTool] = []
self.resources: List[str] = []
self.performance_evaluation: List[str] = []
self.response_format = {
"thoughts": {
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user",
},
"command": {"name": "command name", "args": {"arg name": "value"}},
}
def add_constraint(self, constraint: str) -> None:
"""
Add a constraint to the constraints list.
Args:
constraint (str): The constraint to be added.
"""
self.constraints.append(constraint)
def add_tool(self, tool: BaseTool) -> None:
self.commands.append(tool)
def _generate_command_string(self, tool: BaseTool) -> str:
output = f"{tool.name}: {tool.description}"
output += f", args json schema: {json.dumps(tool.args)}"
return output
def add_resource(self, resource: str) -> None:
"""
Add a resource to the resources list.
Args:
resource (str): The resource to be added.
"""
self.resources.append(resource)
def add_performance_evaluation(self, evaluation: str) -> None:
"""
Add a performance evaluation item to the performance_evaluation list.
Args:
evaluation (str): The evaluation item to be added.
"""
self.performance_evaluation.append(evaluation)
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
"""
Generate a numbered list from given items based on the item_type.
Args:
items (list): A list of items to be numbered.
item_type (str, optional): The type of items in the list.
Defaults to 'list'.
Returns:
str: The formatted numbered list.
"""
if item_type == "command":
command_strings = [
f"{i + 1}. {self._generate_command_string(item)}"
for i, item in enumerate(items)
]
finish_description = (
"use this to signal that you have finished all your objectives"
)
finish_args = (
'"response": "final response to let '
'people know you have finished your objectives"'
)
finish_string = (
f"{len(items) + 1}. {FINISH_NAME}: "
f"{finish_description}, args: {finish_args}"
)
return "\n".join(command_strings + [finish_string])
else:
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
def generate_prompt_string(self) -> str:
"""Generate a prompt string.
Returns:
str: The generated prompt string.
"""
formatted_response_format = json.dumps(self.response_format, indent=4)
prompt_string = (
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
f"Commands:\n"
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
f"Performance Evaluation:\n"
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
f"You should only respond in JSON format as described below "
f"\nResponse Format: \n{formatted_response_format} "
f"\nEnsure the response can be parsed by Python json.loads"
)
return prompt_string
def get_prompt(tools: List[BaseTool]) -> str:
"""Generates a prompt string.
It includes various constraints, commands, resources, and performance evaluations.
Returns:
str: The generated prompt string.
"""
# Initialize the PromptGenerator object
prompt_generator = PromptGenerator()
# Add constraints to the PromptGenerator object
prompt_generator.add_constraint(
"~4000 word limit for short term memory. "
"Your short term memory is short, "
"so immediately save important information to files."
)
prompt_generator.add_constraint(
"If you are unsure how you previously did something "
"or want to recall past events, "
"thinking about similar events will help you remember."
)
prompt_generator.add_constraint("No user assistance")
prompt_generator.add_constraint(
'Exclusively use the commands listed in double quotes e.g. "command name"'
)
# Add commands to the PromptGenerator object
for tool in tools:
prompt_generator.add_tool(tool)
# Add resources to the PromptGenerator object
prompt_generator.add_resource(
"Internet access for searches and information gathering."
)
prompt_generator.add_resource("Long Term memory management.")
prompt_generator.add_resource(
"GPT-3.5 powered Agents for delegation of simple tasks."
)
prompt_generator.add_resource("File output.")
# Add performance evaluations to the PromptGenerator object
prompt_generator.add_performance_evaluation(
"Continuously review and analyze your actions "
"to ensure you are performing to the best of your abilities."
)
prompt_generator.add_performance_evaluation(
"Constructively self-criticize your big-picture behavior constantly."
)
prompt_generator.add_performance_evaluation(
"Reflect on past decisions and strategies to refine your approach."
)
prompt_generator.add_performance_evaluation(
"Every command has a cost, so be smart and efficient. "
"Aim to complete tasks in the least number of steps."
)
# Generate the prompt string
prompt_string = prompt_generator.generate_prompt_string()
return prompt_string

@ -1,35 +1,24 @@
"""Tool for asking human input."""
from typing import Callable, Optional
from pydantic import Field
from langchain.callbacks.manager import CallbackManagerForToolRun
from langchain.tools.base import BaseTool
def _print_func(text: str) -> None:
print("\n")
print(text)
class HumanInputRun(BaseTool):
class HumanInputRun:
"""Tool that asks user for input."""
name = "human"
description = (
def __init__(self, prompt_func=None, input_func=None):
self.name = "human"
self.description = (
"You can ask a human for guidance when you think you "
"got stuck or you are not sure what to do next. "
"The input should be a question for the human."
)
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func)
input_func: Callable = Field(default_factory=lambda: input)
self.prompt_func = prompt_func if prompt_func else self._print_func
self.input_func = input_func if input_func else input
def _print_func(self, text: str) -> None:
print("\n")
print(text)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
def run(self, query: str) -> str:
"""Use the Human input tool."""
self.prompt_func(query)
return self.input_func()

@ -1,7 +1,7 @@
import pytest
import torch
from unittest.mock import Mock
from swarms.agents.models.hf import HuggingFaceLLM
from swarms.agents.models.huggingface import HuggingFaceLLM
@pytest.fixture

Loading…
Cancel
Save