parent
7da009a5ec
commit
46bc36629f
@ -1,31 +1,42 @@
|
|||||||
|
|
||||||
|
# ==================================
|
||||||
# Use an official Python runtime as a parent image
|
# Use an official Python runtime as a parent image
|
||||||
FROM python:3.9-slim
|
FROM python:3.9-slim
|
||||||
|
|
||||||
# Set environment variables to make Python output unbuffered and disable the PIP cache
|
# Set environment variables
|
||||||
ENV PYTHONDONTWRITEBYTECODE 1
|
ENV PYTHONDONTWRITEBYTECODE 1
|
||||||
ENV PYTHONUNBUFFERED 1
|
ENV PYTHONUNBUFFERED 1
|
||||||
ENV PIP_NO_CACHE_DIR off
|
|
||||||
ENV PIP_DISABLE_PIP_VERSION_CHECK on
|
|
||||||
ENV PIP_DEFAULT_TIMEOUT 100
|
|
||||||
|
|
||||||
# Set the working directory in the container
|
# Set the working directory in the container
|
||||||
WORKDIR /usr/src/app
|
WORKDIR /usr/src/swarm_cloud
|
||||||
|
|
||||||
|
|
||||||
|
# Install Python dependencies
|
||||||
|
# COPY requirements.txt and pyproject.toml if you're using poetry for dependency management
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN pip install --upgrade pip
|
||||||
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
# Copy the current directory contents into the container at /usr/src/app
|
# Install the 'swarms' package, assuming it's available on PyPI
|
||||||
|
RUN pip install swarms
|
||||||
|
|
||||||
|
# Copy the rest of the application
|
||||||
COPY . .
|
COPY . .
|
||||||
|
|
||||||
# Install Poetry
|
# Add entrypoint script if needed
|
||||||
RUN pip install poetry
|
# COPY ./entrypoint.sh .
|
||||||
|
# RUN chmod +x /usr/src/swarm_cloud/entrypoint.sh
|
||||||
|
|
||||||
# Disable virtualenv creation by poetry and install dependencies
|
# Expose port if your application has a web interface
|
||||||
RUN poetry config virtualenvs.create false
|
# EXPOSE 5000
|
||||||
RUN poetry install --no-interaction --no-ansi
|
|
||||||
|
|
||||||
# Install the 'swarms' package if it's not included in the poetry.lock
|
# # Define environment variable for the swarm to work
|
||||||
RUN pip install swarms
|
# ENV SWARM_API_KEY=your_swarm_api_key_here
|
||||||
|
|
||||||
# Assuming tests require pytest to run
|
# # Add Docker CMD or ENTRYPOINT script to run the application
|
||||||
RUN pip install pytest
|
# CMD python your_swarm_startup_script.py
|
||||||
|
# Or use the entrypoint script if you have one
|
||||||
|
# ENTRYPOINT ["/usr/src/swarm_cloud/entrypoint.sh"]
|
||||||
|
|
||||||
# Run pytest on all tests in the tests directory
|
# If you're using `CMD` to execute a Python script, make sure it's executable
|
||||||
CMD find ./tests -name '*.py' -exec pytest {} +
|
# RUN chmod +x your_swarm_startup_script.py
|
||||||
|
@ -0,0 +1,33 @@
|
|||||||
|
# TESTING
|
||||||
|
# -==================
|
||||||
|
# Use an official Python runtime as a parent image
|
||||||
|
FROM python:3.9-slim
|
||||||
|
|
||||||
|
# Set environment variables to make Python output unbuffered and disable the PIP cache
|
||||||
|
ENV PYTHONDONTWRITEBYTECODE 1
|
||||||
|
ENV PYTHONUNBUFFERED 1
|
||||||
|
ENV PIP_NO_CACHE_DIR off
|
||||||
|
ENV PIP_DISABLE_PIP_VERSION_CHECK on
|
||||||
|
ENV PIP_DEFAULT_TIMEOUT 100
|
||||||
|
|
||||||
|
# Set the working directory in the container
|
||||||
|
WORKDIR /usr/src/app
|
||||||
|
|
||||||
|
# Copy the current directory contents into the container at /usr/src/app
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Install Poetry
|
||||||
|
RUN pip install poetry
|
||||||
|
|
||||||
|
# Disable virtualenv creation by poetry and install dependencies
|
||||||
|
RUN poetry config virtualenvs.create false
|
||||||
|
RUN poetry install --no-interaction --no-ansi
|
||||||
|
|
||||||
|
# Install the 'swarms' package if it's not included in the poetry.lock
|
||||||
|
RUN pip install swarms
|
||||||
|
|
||||||
|
# Assuming tests require pytest to run
|
||||||
|
RUN pip install pytest
|
||||||
|
|
||||||
|
# Run pytest on all tests in the tests directory
|
||||||
|
CMD find ./tests -name '*.py' -exec pytest {} +
|
@ -0,0 +1,76 @@
|
|||||||
|
import os
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from unittest.mock import Mock, patch
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
from swarms.models.autotemp import AutoTempAgent
|
||||||
|
|
||||||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def auto_temp_agent():
|
||||||
|
return AutoTempAgent(api_key=api_key)
|
||||||
|
|
||||||
|
|
||||||
|
def test_initialization(auto_temp_agent):
|
||||||
|
assert isinstance(auto_temp_agent, AutoTempAgent)
|
||||||
|
assert auto_temp_agent.auto_select is True
|
||||||
|
assert auto_temp_agent.max_workers == 6
|
||||||
|
assert auto_temp_agent.temperature == 0.5
|
||||||
|
assert auto_temp_agent.alt_temps == [0.4, 0.6, 0.8, 1.0, 1.2, 1.4]
|
||||||
|
|
||||||
|
|
||||||
|
def test_evaluate_output(auto_temp_agent):
|
||||||
|
output = "This is a test output."
|
||||||
|
with patch("swarms.models.OpenAIChat") as MockOpenAIChat:
|
||||||
|
mock_instance = MockOpenAIChat.return_value
|
||||||
|
mock_instance.return_value = "Score: 95.5"
|
||||||
|
score = auto_temp_agent.evaluate_output(output)
|
||||||
|
assert score == 95.5
|
||||||
|
mock_instance.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
def test_run_auto_select(auto_temp_agent):
|
||||||
|
task = "Generate a blog post."
|
||||||
|
temperature_string = "0.4,0.6,0.8,1.0,1.2,1.4"
|
||||||
|
result = auto_temp_agent.run(task, temperature_string)
|
||||||
|
assert "Best AutoTemp Output" in result
|
||||||
|
assert "Temp" in result
|
||||||
|
assert "Score" in result
|
||||||
|
|
||||||
|
|
||||||
|
def test_run_no_scores(auto_temp_agent):
|
||||||
|
task = "Invalid task."
|
||||||
|
temperature_string = "0.4,0.6,0.8,1.0,1.2,1.4"
|
||||||
|
with ThreadPoolExecutor(max_workers=auto_temp_agent.max_workers) as executor:
|
||||||
|
with patch.object(executor, "submit", side_effect=[None, None, None, None, None, None]):
|
||||||
|
result = auto_temp_agent.run(task, temperature_string)
|
||||||
|
assert result == "No valid outputs generated."
|
||||||
|
|
||||||
|
|
||||||
|
def test_run_manual_select(auto_temp_agent):
|
||||||
|
auto_temp_agent.auto_select = False
|
||||||
|
task = "Generate a blog post."
|
||||||
|
temperature_string = "0.4,0.6,0.8,1.0,1.2,1.4"
|
||||||
|
result = auto_temp_agent.run(task, temperature_string)
|
||||||
|
assert "Best AutoTemp Output" not in result
|
||||||
|
assert "Temp" in result
|
||||||
|
assert "Score" in result
|
||||||
|
|
||||||
|
|
||||||
|
def test_failed_initialization():
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
AutoTempAgent()
|
||||||
|
|
||||||
|
|
||||||
|
def test_failed_evaluate_output(auto_temp_agent):
|
||||||
|
output = "This is a test output."
|
||||||
|
with patch("swarms.models.OpenAIChat") as MockOpenAIChat:
|
||||||
|
mock_instance = MockOpenAIChat.return_value
|
||||||
|
mock_instance.return_value = "Invalid score text"
|
||||||
|
score = auto_temp_agent.evaluate_output(output)
|
||||||
|
assert score == 0.0
|
@ -0,0 +1,154 @@
|
|||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
from functools import wraps
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from swarms.models.distill_whisperx import DistilWhisperModel, async_retry
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def distil_whisper_model():
|
||||||
|
return DistilWhisperModel()
|
||||||
|
|
||||||
|
|
||||||
|
def create_audio_file(data: np.ndarray, sample_rate: int, file_path: str):
|
||||||
|
data.tofile(file_path)
|
||||||
|
return file_path
|
||||||
|
|
||||||
|
|
||||||
|
def test_initialization(distil_whisper_model):
|
||||||
|
assert isinstance(distil_whisper_model, DistilWhisperModel)
|
||||||
|
assert isinstance(distil_whisper_model.model, torch.nn.Module)
|
||||||
|
assert isinstance(distil_whisper_model.processor, torch.nn.Module)
|
||||||
|
assert distil_whisper_model.device in ["cpu", "cuda:0"]
|
||||||
|
|
||||||
|
|
||||||
|
def test_transcribe_audio_file(distil_whisper_model):
|
||||||
|
test_data = np.random.rand(16000) # Simulated audio data (1 second)
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
|
||||||
|
audio_file_path = create_audio_file(test_data, 16000, audio_file.name)
|
||||||
|
transcription = distil_whisper_model.transcribe(audio_file_path)
|
||||||
|
os.remove(audio_file_path)
|
||||||
|
|
||||||
|
assert isinstance(transcription, str)
|
||||||
|
assert transcription.strip() != ""
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_transcribe_audio_file(distil_whisper_model):
|
||||||
|
test_data = np.random.rand(16000) # Simulated audio data (1 second)
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
|
||||||
|
audio_file_path = create_audio_file(test_data, 16000, audio_file.name)
|
||||||
|
transcription = await distil_whisper_model.async_transcribe(audio_file_path)
|
||||||
|
os.remove(audio_file_path)
|
||||||
|
|
||||||
|
assert isinstance(transcription, str)
|
||||||
|
assert transcription.strip() != ""
|
||||||
|
|
||||||
|
|
||||||
|
def test_transcribe_audio_data(distil_whisper_model):
|
||||||
|
test_data = np.random.rand(16000) # Simulated audio data (1 second)
|
||||||
|
transcription = distil_whisper_model.transcribe(test_data.tobytes())
|
||||||
|
|
||||||
|
assert isinstance(transcription, str)
|
||||||
|
assert transcription.strip() != ""
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_transcribe_audio_data(distil_whisper_model):
|
||||||
|
test_data = np.random.rand(16000) # Simulated audio data (1 second)
|
||||||
|
transcription = await distil_whisper_model.async_transcribe(test_data.tobytes())
|
||||||
|
|
||||||
|
assert isinstance(transcription, str)
|
||||||
|
assert transcription.strip() != ""
|
||||||
|
|
||||||
|
|
||||||
|
def test_real_time_transcribe(distil_whisper_model, capsys):
|
||||||
|
test_data = np.random.rand(16000 * 5) # Simulated audio data (5 seconds)
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
|
||||||
|
audio_file_path = create_audio_file(test_data, 16000, audio_file.name)
|
||||||
|
|
||||||
|
distil_whisper_model.real_time_transcribe(audio_file_path, chunk_duration=1)
|
||||||
|
|
||||||
|
os.remove(audio_file_path)
|
||||||
|
|
||||||
|
captured = capsys.readouterr()
|
||||||
|
assert "Starting real-time transcription..." in captured.out
|
||||||
|
assert "Chunk" in captured.out
|
||||||
|
|
||||||
|
|
||||||
|
def test_real_time_transcribe_audio_file_not_found(distil_whisper_model, capsys):
|
||||||
|
audio_file_path = "non_existent_audio.wav"
|
||||||
|
distil_whisper_model.real_time_transcribe(audio_file_path, chunk_duration=1)
|
||||||
|
|
||||||
|
captured = capsys.readouterr()
|
||||||
|
assert "The audio file was not found." in captured.out
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_async_retry():
|
||||||
|
def _mock_async_retry(retries=3, exceptions=(Exception,), delay=1):
|
||||||
|
def decorator(func):
|
||||||
|
@wraps(func)
|
||||||
|
async def wrapper(*args, **kwargs):
|
||||||
|
return await func(*args, **kwargs)
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
with patch("distil_whisper_model.async_retry", new=_mock_async_retry()):
|
||||||
|
yield
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_retry_decorator_success():
|
||||||
|
async def mock_async_function():
|
||||||
|
return "Success"
|
||||||
|
|
||||||
|
decorated_function = async_retry()(mock_async_function)
|
||||||
|
result = await decorated_function()
|
||||||
|
assert result == "Success"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_retry_decorator_failure():
|
||||||
|
async def mock_async_function():
|
||||||
|
raise Exception("Error")
|
||||||
|
|
||||||
|
decorated_function = async_retry()(mock_async_function)
|
||||||
|
with pytest.raises(Exception, match="Error"):
|
||||||
|
await decorated_function()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_retry_decorator_multiple_attempts():
|
||||||
|
async def mock_async_function():
|
||||||
|
if mock_async_function.attempts == 0:
|
||||||
|
mock_async_function.attempts += 1
|
||||||
|
raise Exception("Error")
|
||||||
|
else:
|
||||||
|
return "Success"
|
||||||
|
|
||||||
|
mock_async_function.attempts = 0
|
||||||
|
decorated_function = async_retry(max_retries=2)(mock_async_function)
|
||||||
|
result = await decorated_function()
|
||||||
|
assert result == "Success"
|
||||||
|
|
||||||
|
|
||||||
|
def test_create_audio_file():
|
||||||
|
test_data = np.random.rand(16000) # Simulated audio data (1 second)
|
||||||
|
sample_rate = 16000
|
||||||
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
|
||||||
|
audio_file_path = create_audio_file(test_data, sample_rate, audio_file.name)
|
||||||
|
|
||||||
|
assert os.path.exists(audio_file_path)
|
||||||
|
os.remove(audio_file_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
pytest.main()
|
@ -0,0 +1,82 @@
|
|||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
from swarms.models.jina_embeds import JinaEmbeddings
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def model():
|
||||||
|
return JinaEmbeddings("bert-base-uncased", verbose=True)
|
||||||
|
|
||||||
|
|
||||||
|
def test_initialization(model):
|
||||||
|
assert isinstance(model, JinaEmbeddings)
|
||||||
|
assert model.device in ["cuda", "cpu"]
|
||||||
|
assert model.max_length == 500
|
||||||
|
assert model.verbose is True
|
||||||
|
|
||||||
|
|
||||||
|
def test_run_sync(model):
|
||||||
|
task = "Encode this text"
|
||||||
|
result = model.run(task)
|
||||||
|
assert isinstance(result, torch.Tensor)
|
||||||
|
assert result.shape == (model.max_length,)
|
||||||
|
|
||||||
|
|
||||||
|
def test_run_async(model):
|
||||||
|
task = "Encode this text"
|
||||||
|
result = model.run_async(task)
|
||||||
|
assert isinstance(result, torch.Tensor)
|
||||||
|
assert result.shape == (model.max_length,)
|
||||||
|
|
||||||
|
|
||||||
|
def test_save_model(tmp_path, model):
|
||||||
|
model_path = tmp_path / "model"
|
||||||
|
model.save_model(model_path)
|
||||||
|
assert (model_path / "config.json").is_file()
|
||||||
|
assert (model_path / "pytorch_model.bin").is_file()
|
||||||
|
assert (model_path / "vocab.txt").is_file()
|
||||||
|
|
||||||
|
|
||||||
|
def test_gpu_available(model):
|
||||||
|
gpu_status = model.gpu_available()
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
assert gpu_status is True
|
||||||
|
else:
|
||||||
|
assert gpu_status is False
|
||||||
|
|
||||||
|
|
||||||
|
def test_memory_consumption(model):
|
||||||
|
memory_stats = model.memory_consumption()
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
assert "allocated" in memory_stats
|
||||||
|
assert "reserved" in memory_stats
|
||||||
|
else:
|
||||||
|
assert "error" in memory_stats
|
||||||
|
|
||||||
|
|
||||||
|
def test_cosine_similarity(model):
|
||||||
|
task1 = "This is a sample text for testing."
|
||||||
|
task2 = "Another sample text for testing."
|
||||||
|
embeddings1 = model.run(task1)
|
||||||
|
embeddings2 = model.run(task2)
|
||||||
|
sim = model.cos_sim(embeddings1, embeddings2)
|
||||||
|
assert isinstance(sim, torch.Tensor)
|
||||||
|
assert sim.item() >= -1.0 and sim.item() <= 1.0
|
||||||
|
|
||||||
|
|
||||||
|
def test_failed_load_model(caplog):
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
JinaEmbeddings("invalid_model")
|
||||||
|
assert "Failed to load the model or the tokenizer" in caplog.text
|
||||||
|
|
||||||
|
|
||||||
|
def test_failed_generate_text(caplog, model):
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
model.run("invalid_task")
|
||||||
|
assert "Failed to generate the text" in caplog.text
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||||
|
def test_change_device(model, device):
|
||||||
|
model.device = device
|
||||||
|
assert model.device == device
|
Loading…
Reference in new issue