[agent_run]

pull/546/head
Kye Gomez 6 months ago
parent da7ba6477f
commit 4f4d5be200

@ -168,7 +168,6 @@ nav:
- Nougat: "swarms/models/nougat.md" - Nougat: "swarms/models/nougat.md"
- Dalle3: "swarms/models/dalle3.md" - Dalle3: "swarms/models/dalle3.md"
- GPT4VisionAPI: "swarms/models/gpt4v.md" - GPT4VisionAPI: "swarms/models/gpt4v.md"
- GPT4o: "swarms/models/gpt4o.md"
- Agents: - Agents:
- Agent: "swarms/structs/agent.md" - Agent: "swarms/structs/agent.md"
- Task: "swarms/structs/task.md" - Task: "swarms/structs/task.md"

@ -1,150 +0,0 @@
# Documentation for GPT4o Module
## Overview and Introduction
The `GPT4o` module is a multi-modal conversational model based on OpenAI's GPT-4 architecture. It extends the functionality of the `BaseMultiModalModel` class, enabling it to handle both text and image inputs for generating diverse and contextually rich responses. This module leverages the power of the GPT-4 model to enhance interactions by integrating visual information with textual prompts, making it highly relevant for applications requiring multi-modal understanding and response generation.
### Key Concepts
- **Multi-Modal Model**: A model that can process and generate responses based on multiple types of inputs, such as text and images.
- **System Prompt**: A predefined prompt to guide the conversation flow.
- **Temperature**: A parameter that controls the randomness of the response generation.
- **Max Tokens**: The maximum number of tokens (words or word pieces) in the generated response.
## Class Definition
### `GPT4o` Class
### Parameters
| Parameter | Type | Description |
|-----------------|--------|--------------------------------------------------------------------------------------|
| `system_prompt` | `str` | The system prompt to be used in the conversation. |
| `temperature` | `float`| The temperature parameter for generating diverse responses. Default is `0.1`. |
| `max_tokens` | `int` | The maximum number of tokens in the generated response. Default is `300`. |
| `openai_api_key`| `str` | The API key for accessing the OpenAI GPT-4 API. |
| `*args` | | Additional positional arguments. |
| `**kwargs` | | Additional keyword arguments. |
## Functionality and Usage
### `encode_image` Function
The `encode_image` function is used to encode an image file into a base64 string format, which can then be included in the request to the GPT-4 API.
#### Parameters
| Parameter | Type | Description |
|---------------|--------|----------------------------------------------|
| `image_path` | `str` | The local path to the image file to be encoded. |
#### Returns
| Return Type | Description |
|-------------|---------------------------------|
| `str` | The base64 encoded string of the image. |
### `GPT4o.__init__` Method
The constructor for the `GPT4o` class initializes the model with the specified parameters and sets up the OpenAI client.
### `GPT4o.run` Method
The `run` method executes the GPT-4o model to generate a response based on the provided task and optional image.
#### Parameters
| Parameter | Type | Description |
|---------------|--------|----------------------------------------------------|
| `task` | `str` | The task or user prompt for the conversation. |
| `local_img` | `str` | The local path to the image file. |
| `img` | `str` | The URL of the image. |
| `*args` | | Additional positional arguments. |
| `**kwargs` | | Additional keyword arguments. |
#### Returns
| Return Type | Description |
|-------------|--------------------------------------------------|
| `str` | The generated response from the GPT-4o model. |
## Usage Examples
### Example 1: Basic Text Prompt
```python
from swarms import GPT4o
# Initialize the model
model = GPT4o(
system_prompt="You are a helpful assistant.",
temperature=0.7,
max_tokens=150,
openai_api_key="your_openai_api_key"
)
# Define the task
task = "What is the capital of France?"
# Generate response
response = model.run(task)
print(response)
```
### Example 2: Text Prompt with Local Image
```python
from swarms import GPT4o
# Initialize the model
model = GPT4o(
system_prompt="Describe the image content.",
temperature=0.5,
max_tokens=200,
openai_api_key="your_openai_api_key"
)
# Define the task and image path
task = "Describe the content of this image."
local_img = "path/to/your/image.jpg"
# Generate response
response = model.run(task, local_img=local_img)
print(response)
```
### Example 3: Text Prompt with Image URL
```python
from swarms import GPT4o
# Initialize the model
model = GPT4o(
system_prompt="You are a visual assistant.",
temperature=0.6,
max_tokens=250,
openai_api_key="your_openai_api_key"
)
# Define the task and image URL
task = "What can you tell about the scenery in this image?"
img_url = "http://example.com/image.jpg"
# Generate response
response = model.run(task, img=img_url)
print(response)
```
## Additional Information and Tips
- **API Key Management**: Ensure that your OpenAI API key is securely stored and managed. Do not hard-code it in your scripts. Use environment variables or secure storage solutions.
- **Image Encoding**: The `encode_image` function is crucial for converting images to a base64 format suitable for API requests. Ensure that the images are accessible and properly formatted.
- **Temperature Parameter**: Adjust the `temperature` parameter to control the creativity of the model's responses. Lower values make the output more deterministic, while higher values increase randomness.
- **Token Limit**: Be mindful of the `max_tokens` parameter to avoid exceeding the API's token limits. This parameter controls the length of the generated responses.
## References and Resources
- [OpenAI API Documentation](https://beta.openai.com/docs/)
- [Python Base64 Encoding](https://docs.python.org/3/library/base64.html)
- [dotenv Documentation](https://saurabh-kumar.com/python-dotenv/)
- [BaseMultiModalModel Documentation](https://swarms.apac.ai)

@ -27,7 +27,6 @@ This endpoint returns a list of available model names. It is useful for clients
```json ```json
[ [
"OpenAIChat", "OpenAIChat",
"GPT4o",
"GPT4VisionAPI", "GPT4VisionAPI",
"Anthropic" "Anthropic"
] ]

@ -18,7 +18,7 @@ from playground.demos.plant_biologist_swarm.prompts import (
treatment_recommender_agent, treatment_recommender_agent,
) )
from swarms import Agent from swarms import Agent
from swarms.models.gpt_o import GPT4o from swarms.models.gpt_o import GPT4VisionAPI
# Load the OpenAI API key from the .env file # Load the OpenAI API key from the .env file
load_dotenv() load_dotenv()
@ -28,7 +28,9 @@ api_key = os.environ.get("OPENAI_API_KEY")
# llm = llm, # llm = llm,
llm = GPT4o(max_tokens=3000, openai_api_key=os.getenv("OPENAI_API_KEY")) llm = GPT4VisionAPI(
max_tokens=3000, openai_api_key=os.getenv("OPENAI_API_KEY")
)
# Initialize Diagnoser Agent # Initialize Diagnoser Agent
diagnoser_agent = Agent( diagnoser_agent = Agent(

@ -10,7 +10,7 @@ from playground.demos.plant_biologist_swarm.prompts import (
) )
from swarms import Agent, ConcurrentWorkflow from swarms import Agent, ConcurrentWorkflow
from swarms.models.gpt_o import GPT4o from swarms.models.gpt_o import GPT4VisionAPI
# Load the OpenAI API key from the .env file # Load the OpenAI API key from the .env file
@ -19,8 +19,8 @@ load_dotenv()
# Initialize the OpenAI API key # Initialize the OpenAI API key
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
# GPT4o # GPT4VisionAPI
llm = GPT4o( llm = GPT4VisionAPI(
max_tokens=4000, max_tokens=4000,
) )

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "5.4.1" version = "5.4.2"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]

@ -215,7 +215,7 @@ class AgricultureOptimizationSwarm(BaseSwarm):
def __init__( def __init__(
self, self,
name: str = "jeremy/agricultural-optimization-gpt4o", name: str = "jeremy/agricultural-optimization-gpt4o",
description: str = "A swarm utilizing GPT4o for agricultural optimization.", description: str = "A swarm utilizing GPT4VisionAPI for agricultural optimization.",
agents: List[Agent] = agents, agents: List[Agent] = agents,
*args, *args,
**kwargs, **kwargs,

@ -743,8 +743,6 @@ class Agent(BaseStructure):
task, *args, **kwargs task, *args, **kwargs
) )
) )
# print(len(memory_retrieval))
# Merge the task prompt with the memory retrieval # Merge the task prompt with the memory retrieval
task_prompt = f"{task_prompt} Documents: Available {memory_retrieval}" task_prompt = f"{task_prompt} Documents: Available {memory_retrieval}"
@ -786,6 +784,8 @@ class Agent(BaseStructure):
role=self.agent_name, content=response role=self.agent_name, content=response
) )
all_responses.append(response)
# Check if tools is not None # Check if tools is not None
if self.tools is not None: if self.tools is not None:
self.parse_function_call_and_execute(response) self.parse_function_call_and_execute(response)
@ -804,6 +804,8 @@ class Agent(BaseStructure):
content=evaluated_response, content=evaluated_response,
) )
all_responses.append(evaluated_response)
# Sentiment analysis # Sentiment analysis
if self.sentiment_analyzer: if self.sentiment_analyzer:
self.sentiment_analysis_handler(response) self.sentiment_analysis_handler(response)

Loading…
Cancel
Save