parent
f8545639ac
commit
58e1905b5d
@ -1,4 +1,5 @@
|
|||||||
# from swarms import Swarms, swarm
|
# from swarms import Swarms, swarm
|
||||||
from swarms.swarms import Swarms, swarm
|
from swarms.swarms import Swarms, swarm
|
||||||
from swarms.agents import worker_node
|
from swarms.agents import worker_node
|
||||||
from swarms.agents.workers.WorkerUltraNode import WorkerUltraNode, WorkerUltra
|
from swarms.agents.workers.WorkerUltraNode import WorkerUltraNode, WorkerUltra
|
||||||
|
from swarms.agents.workers.worker_agent_ultra import worker_ultra_node
|
@ -0,0 +1,168 @@
|
|||||||
|
import os
|
||||||
|
import logging
|
||||||
|
from typing import Optional, Type
|
||||||
|
from langchain.callbacks.manager import (
|
||||||
|
AsyncCallbackManagerForToolRun,
|
||||||
|
CallbackManagerForToolRun,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
from swarms.tools.agent_tools import *
|
||||||
|
from typing import List, Any, Dict, Optional
|
||||||
|
from langchain.memory.chat_message_histories import FileChatMessageHistory
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pydantic import BaseModel, Extra
|
||||||
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
from typing import List, Any, Dict, Optional
|
||||||
|
from langchain.memory.chat_message_histories import FileChatMessageHistory
|
||||||
|
from swarms.utils.main import BaseHandler, FileHandler, FileType
|
||||||
|
from swarms.tools.main import ExitConversation, RequestsGet, CodeEditor, Terminal
|
||||||
|
from swarms.utils.main import CsvToDataframe
|
||||||
|
from swarms.tools.main import BaseToolSet
|
||||||
|
from swarms.utils.main import StaticUploader
|
||||||
|
|
||||||
|
|
||||||
|
class WorkerUltraNode:
|
||||||
|
"""Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"""
|
||||||
|
|
||||||
|
def __init__(self, llm, toolsets, vectorstore):
|
||||||
|
if not llm or not toolsets or not vectorstore:
|
||||||
|
logging.error("llm, toolsets, and vectorstore cannot be None.")
|
||||||
|
raise ValueError("llm, toolsets, and vectorstore cannot be None.")
|
||||||
|
|
||||||
|
self.llm = llm
|
||||||
|
self.toolsets = toolsets
|
||||||
|
self.vectorstore = vectorstore
|
||||||
|
self.agent = None
|
||||||
|
|
||||||
|
def create_agent(self, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
|
||||||
|
logging.info("Creating agent in WorkerNode")
|
||||||
|
try:
|
||||||
|
self.agent = AutoGPT.from_llm_and_tools(
|
||||||
|
ai_name=ai_name,
|
||||||
|
ai_role=ai_role,
|
||||||
|
tools=self.toolsets,
|
||||||
|
llm=self.llm,
|
||||||
|
memory=self.vectorstore.as_retriever(search_kwargs=search_kwargs),
|
||||||
|
human_in_the_loop=human_in_the_loop,
|
||||||
|
chat_history_memory=FileChatMessageHistory("chat_history.txt"),
|
||||||
|
)
|
||||||
|
self.agent.chain.verbose = verbose
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error while creating agent: {str(e)}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
def add_toolset(self, toolset: BaseToolSet):
|
||||||
|
if not isinstance(toolset, BaseToolSet):
|
||||||
|
logging.error("Toolset must be an instance of BaseToolSet.")
|
||||||
|
raise TypeError("Toolset must be an instance of BaseToolSet.")
|
||||||
|
|
||||||
|
self.toolsets.append(toolset)
|
||||||
|
|
||||||
|
def run(self, prompt: str) -> str:
|
||||||
|
if not isinstance(prompt, str):
|
||||||
|
logging.error("Prompt must be a string.")
|
||||||
|
raise TypeError("Prompt must be a string.")
|
||||||
|
|
||||||
|
if not prompt:
|
||||||
|
logging.error("Prompt is empty.")
|
||||||
|
raise ValueError("Prompt is empty.")
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.agent.run([f"{prompt}"])
|
||||||
|
return "Task completed by WorkerNode"
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"While running the agent: {str(e)}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
class WorkerUltraNodeInitializer:
|
||||||
|
def __init__(self, openai_api_key):
|
||||||
|
if not openai_api_key:
|
||||||
|
logging.error("OpenAI API key is not provided")
|
||||||
|
raise ValueError("openai_api_key cannot be None")
|
||||||
|
|
||||||
|
self.openai_api_key = openai_api_key
|
||||||
|
|
||||||
|
def initialize_llm(self, llm_class, temperature=0.5):
|
||||||
|
if not llm_class:
|
||||||
|
logging.error("llm_class cannot be none")
|
||||||
|
raise ValueError("llm_class cannot be None")
|
||||||
|
|
||||||
|
try:
|
||||||
|
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Failed to initialize language model: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def initialize_toolsets(self):
|
||||||
|
try:
|
||||||
|
toolsets: List[BaseToolSet] = [
|
||||||
|
Terminal(),
|
||||||
|
CodeEditor(),
|
||||||
|
RequestsGet(),
|
||||||
|
ExitConversation(),
|
||||||
|
]
|
||||||
|
handlers: Dict[FileType, BaseHandler] = {FileType.DATAFRAME: CsvToDataframe()}
|
||||||
|
|
||||||
|
if os.environ.get("USE_GPU", False):
|
||||||
|
import torch
|
||||||
|
from swarms.tools.main import ImageCaptioning
|
||||||
|
from swarms.tools.main import ImageEditing, InstructPix2Pix, Text2Image, VisualQuestionAnswering
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
toolsets.extend(
|
||||||
|
[
|
||||||
|
Text2Image("cuda"),
|
||||||
|
ImageEditing("cuda"),
|
||||||
|
InstructPix2Pix("cuda"),
|
||||||
|
VisualQuestionAnswering("cuda"),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
handlers[FileType.IMAGE] = ImageCaptioning("cuda")
|
||||||
|
|
||||||
|
return toolsets
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Failed to initialize toolsets: {e}")
|
||||||
|
|
||||||
|
def initialize_vectorstore(self):
|
||||||
|
try:
|
||||||
|
|
||||||
|
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
|
||||||
|
embedding_size = 1536
|
||||||
|
index = faiss.IndexFlatL2(embedding_size)
|
||||||
|
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Failed to initialize vector store: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def create_worker_node(self, llm_class=ChatOpenAI, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
|
||||||
|
if not llm_class:
|
||||||
|
logging.error("llm_class cannot be None.")
|
||||||
|
raise ValueError("llm_class cannot be None.")
|
||||||
|
try:
|
||||||
|
worker_toolsets = self.initialize_toolsets()
|
||||||
|
vectorstore = self.initialize_vectorstore()
|
||||||
|
worker_node = WorkerUltraNode(llm=self.initialize_llm(llm_class), toolsets=worker_toolsets, vectorstore=vectorstore)
|
||||||
|
worker_node.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose)
|
||||||
|
return worker_node
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Failed to create worker node: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def worker_ultra_node(openai_api_key):
|
||||||
|
if not openai_api_key:
|
||||||
|
logging.error("OpenAI API key is not provided")
|
||||||
|
raise ValueError("OpenAI API key is required")
|
||||||
|
|
||||||
|
try:
|
||||||
|
initializer = WorkerUltraNodeInitializer(openai_api_key)
|
||||||
|
worker_node = initializer.create_worker_node()
|
||||||
|
return worker_node
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred in worker_node: {e}")
|
||||||
|
raise
|
Loading…
Reference in new issue