scaffold of openai class

Former-commit-id: 4abc823215
group-chat
Kye 1 year ago
parent 6a352053fc
commit 680e997974

@ -1,99 +1,304 @@
#kye
#aug 8, 11:51
import warnings
import logging
import sys
from typing import (
Any,
Collection,
Dict,
Field,
List,
Literal,
Optional,
Tuple,
Union,
AbstractSet
)
from simpleaichat import AIChat, AsyncAIChat
import asyncio
import openai
import tiktoken
import os
def get_from_dict_or_env(
data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None
) -> str:
"""Get a value from a dictionary or an environment variable."""
if key in data and data[key]:
return data[key]
else:
return get_from_env(key, env_key, default=default)
class OpenAI:
def __init__(self,
api_key=None,
system=None,
console=True,
model=None,
params=None,
save_messages=True):
self.api_key = api_key or self.fetch_api_key()
self.system = system or "You are a helpful assistant"
try:
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
"""Get a value from a dictionary or an environment variable."""
if env_key in os.environ and os.environ[env_key]:
return os.environ[env_key]
elif default is not None:
return default
else:
raise ValueError(
f"Did not find {key}, please add an environment variable"
f" `{env_key}` which contains it, or pass"
f" `{key}` as a named parameter."
)
self.ai = AIChat(api_key=self.api_key,
system=self.system,
console=self.console,
model=self.model,
params=self.params,
save_messages=self.save_messages)
self.async_ai = AsyncAIChat(
api_key=self.api_key,
system=self.system,
console=self.console,
model=self.model,
params=self.params,
save_messages=self.save_messages
)
except Exception as error:
raise ValueError(f"Failed to initialize the chat with error: {error}, check inputs and input types")
def __call__(self, message, **kwargs):
try:
return self.ai(message, **kwargs)
except Exception as error:
print(f"Error in OpenAI, {error}")
class OpenAIChat(BaseLLM):
"""OpenAI Chat large language models.
def generate(self, message, **kwargs):
try:
return self.ai(message, **kwargs)
except Exception as error:
print(f"Error in OpenAI, {error}")
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
async def generate_async(self, message, **kwargs):
try:
return await self.async_ai(message, **kwargs)
except Exception as error:
raise Exception(f"Error in asynchronous OpenAI Call, {error}")
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
def initialize_chat(self, ids):
for id in ids:
try:
self.async_ai.new_session(api_key=self.api_key, id=id)
except Exception as error:
raise ValueError(f"Failed to initialize session for ID {id} with error: {error}")
Example:
.. code-block:: python
from langchain.llms import OpenAIChat
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
"""
async def ask_multiple(self, ids, question_template):
client: Any #: :meta private:
model_name: str = "gpt-3.5-turbo"
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
openai_api_base: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
max_retries: int = 6
"""Maximum number of retries to make when generating."""
prefix_messages: List = Field(default_factory=list)
"""Series of messages for Chat input."""
streaming: bool = False
"""Whether to stream the results or not."""
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
"""Set of special tokens that are allowed。"""
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
"""Set of special tokens that are not allowed。"""
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_api_base = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
openai_proxy = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
openai_organization = get_from_dict_or_env(
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
)
try:
self.initialize_chat(ids)
tasks = [self.async_ai(question_template.format(id=id), id=id) for id in ids]
return await asyncio.gather(*tasks)
except Exception as error:
raise Exception(f"Error in ask_multiple: method: {error}")
import openai
async def stream_multiple(self, ids, question_template):
openai.api_key = openai_api_key
if openai_api_base:
openai.api_base = openai_api_base
if openai_organization:
openai.organization = openai_organization
if openai_proxy:
openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
self.initialize_chat(ids)
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
warnings.warn(
"You are trying to use a chat model. This way of initializing it is "
"no longer supported. Instead, please use: "
"`from langchain.chat_models import ChatOpenAI`"
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return self.model_kwargs
def _get_chat_params(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> Tuple:
if len(prompts) > 1:
raise ValueError(
f"OpenAIChat currently only supports single prompt, got {prompts}"
)
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params.get("max_tokens") == -1:
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
del params["max_tokens"]
return messages, params
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, "stream": True}
for stream_resp in completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, "stream": True}
async for stream_resp in await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(token, chunk=chunk)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
if self.streaming:
generation: Optional[GenerationChunk] = None
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
async def stream_id(id):
async for chunk in await self.async_ai.stream(question_template.format(id=id), id=id):
response = chunk["response"]
return response
messages, params = self._get_chat_params(prompts, stop)
params = {**params, **kwargs}
full_response = completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
tasks = [stream_id(id) for id in ids]
return await asyncio.gather(*tasks)
except Exception as error:
raise Exception(f"Error in stream_multiple method: {error}")
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
if self.streaming:
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
messages, params = self._get_chat_params(prompts, stop)
params = {**params, **kwargs}
full_response = await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
def fetch_api_key(self):
pass
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai-chat"
#usage
#from swarms import OpenAI()
#chat = OpenAI()
#response = chat.generate("Hello World")
#print(response)
def get_token_ids(self, text: str) -> List[int]:
"""Get the token IDs using the tiktoken package."""
# tiktoken NOT supported for Python < 3.8
if sys.version_info[1] < 8:
return super().get_token_ids(text)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`."
)
#async
# async_responses = asyncio.run(chat.ask_multiple(['id1', 'id2'], "How is {id}"))
# print(async_responses)
enc = tiktoken.encoding_for_model(self.model_name)
return enc.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
Loading…
Cancel
Save