parent
b6ca99b513
commit
73d23f1995
@ -0,0 +1,56 @@
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from swarm_models import OpenAIChat
|
||||
|
||||
from swarms import Agent
|
||||
from swarms.prompts.finance_agent_sys_prompt import (
|
||||
FINANCIAL_AGENT_SYS_PROMPT,
|
||||
)
|
||||
from async_executor import HighSpeedExecutor
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Get the OpenAI API key from the environment variable
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
# Create an instance of the OpenAIChat class
|
||||
model = OpenAIChat(
|
||||
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
|
||||
)
|
||||
|
||||
# Initialize the agent
|
||||
agent = Agent(
|
||||
agent_name="Financial-Analysis-Agent",
|
||||
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
# autosave=True,
|
||||
# dashboard=False,
|
||||
# verbose=True,
|
||||
# dynamic_temperature_enabled=True,
|
||||
# saved_state_path="finance_agent.json",
|
||||
# user_name="swarms_corp",
|
||||
# retry_attempts=1,
|
||||
# context_length=200000,
|
||||
# return_step_meta=True,
|
||||
# output_type="json", # "json", "dict", "csv" OR "string" soon "yaml" and
|
||||
# auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task
|
||||
# # artifacts_on=True,
|
||||
# artifacts_output_path="roth_ira_report",
|
||||
# artifacts_file_extension=".txt",
|
||||
# max_tokens=8000,
|
||||
# return_history=True,
|
||||
)
|
||||
|
||||
|
||||
def execute_agent(
|
||||
task: str = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria. Create a report on this question.",
|
||||
):
|
||||
return agent.run(task)
|
||||
|
||||
|
||||
executor = HighSpeedExecutor()
|
||||
results = executor.run(execute_agent, 2)
|
||||
|
||||
print(results)
|
@ -0,0 +1,131 @@
|
||||
import asyncio
|
||||
import multiprocessing as mp
|
||||
import time
|
||||
from functools import partial
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
|
||||
class HighSpeedExecutor:
|
||||
def __init__(self, num_processes: int = None):
|
||||
"""
|
||||
Initialize the executor with configurable number of processes.
|
||||
If num_processes is None, it uses CPU count.
|
||||
"""
|
||||
self.num_processes = num_processes or mp.cpu_count()
|
||||
|
||||
async def _worker(
|
||||
self,
|
||||
queue: asyncio.Queue,
|
||||
func: Any,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Async worker that processes tasks from the queue"""
|
||||
while True:
|
||||
try:
|
||||
# Non-blocking get from queue
|
||||
await queue.get()
|
||||
await asyncio.get_event_loop().run_in_executor(
|
||||
None, partial(func, *args, **kwargs)
|
||||
)
|
||||
queue.task_done()
|
||||
except asyncio.CancelledError:
|
||||
break
|
||||
|
||||
async def _distribute_tasks(
|
||||
self, num_tasks: int, queue: asyncio.Queue
|
||||
):
|
||||
"""Distribute tasks across the queue"""
|
||||
for i in range(num_tasks):
|
||||
await queue.put(i)
|
||||
|
||||
async def execute_batch(
|
||||
self,
|
||||
func: Any,
|
||||
num_executions: int,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> Dict[str, Union[int, float]]:
|
||||
"""
|
||||
Execute the given function multiple times concurrently.
|
||||
|
||||
Args:
|
||||
func: The function to execute
|
||||
num_executions: Number of times to execute the function
|
||||
*args, **kwargs: Arguments to pass to the function
|
||||
|
||||
Returns:
|
||||
A dictionary containing the number of executions, duration, and executions per second.
|
||||
"""
|
||||
queue = asyncio.Queue()
|
||||
|
||||
# Create worker tasks
|
||||
workers = [
|
||||
asyncio.create_task(
|
||||
self._worker(queue, func, *args, **kwargs)
|
||||
)
|
||||
for _ in range(self.num_processes)
|
||||
]
|
||||
|
||||
# Start timing
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Distribute tasks
|
||||
await self._distribute_tasks(num_executions, queue)
|
||||
|
||||
# Wait for all tasks to complete
|
||||
await queue.join()
|
||||
|
||||
# Cancel workers
|
||||
for worker in workers:
|
||||
worker.cancel()
|
||||
|
||||
# Wait for all workers to finish
|
||||
await asyncio.gather(*workers, return_exceptions=True)
|
||||
|
||||
end_time = time.perf_counter()
|
||||
duration = end_time - start_time
|
||||
|
||||
return {
|
||||
"executions": num_executions,
|
||||
"duration": duration,
|
||||
"executions_per_second": num_executions / duration,
|
||||
}
|
||||
|
||||
def run(
|
||||
self,
|
||||
func: Any,
|
||||
num_executions: int,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
):
|
||||
return asyncio.run(
|
||||
self.execute_batch(func, num_executions, *args, **kwargs)
|
||||
)
|
||||
|
||||
|
||||
# def example_function(x: int = 0) -> int:
|
||||
# """Example function to execute"""
|
||||
# return x * x
|
||||
|
||||
|
||||
# async def main():
|
||||
# # Create executor with number of CPU cores
|
||||
# executor = HighSpeedExecutor()
|
||||
|
||||
# # Execute the function 1000 times
|
||||
# result = await executor.execute_batch(
|
||||
# example_function, num_executions=1000, x=42
|
||||
# )
|
||||
|
||||
# print(
|
||||
# f"Completed {result['executions']} executions in {result['duration']:.2f} seconds"
|
||||
# )
|
||||
# print(
|
||||
# f"Rate: {result['executions_per_second']:.2f} executions/second"
|
||||
# )
|
||||
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# # Run the async main function
|
||||
# asyncio.run(main())
|
@ -0,0 +1,244 @@
|
||||
import os
|
||||
import asyncio
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Dict, Any
|
||||
from swarms import Agent
|
||||
from swarm_models import OpenAIChat
|
||||
from dotenv import load_dotenv
|
||||
from swarms.utils.formatter import formatter
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Get OpenAI API key
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
|
||||
# Define Pydantic schema for agent outputs
|
||||
class AgentOutput(BaseModel):
|
||||
"""Schema for capturing the output of each agent."""
|
||||
|
||||
agent_name: str = Field(..., description="The name of the agent")
|
||||
message: str = Field(
|
||||
...,
|
||||
description="The agent's response or contribution to the group chat",
|
||||
)
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Additional metadata about the agent's response",
|
||||
)
|
||||
|
||||
|
||||
class GroupChat:
|
||||
"""
|
||||
GroupChat class to enable multiple agents to communicate in an asynchronous group chat.
|
||||
Each agent is aware of all other agents, every message exchanged, and the social context.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
description: str,
|
||||
agents: List[Agent],
|
||||
max_loops: int = 1,
|
||||
):
|
||||
"""
|
||||
Initialize the GroupChat.
|
||||
|
||||
Args:
|
||||
name (str): Name of the group chat.
|
||||
description (str): Description of the purpose of the group chat.
|
||||
agents (List[Agent]): A list of agents participating in the chat.
|
||||
max_loops (int): Maximum number of loops to run through all agents.
|
||||
"""
|
||||
self.name = name
|
||||
self.description = description
|
||||
self.agents = agents
|
||||
self.max_loops = max_loops
|
||||
self.chat_history = (
|
||||
[]
|
||||
) # Stores all messages exchanged in the chat
|
||||
|
||||
formatter.print_panel(
|
||||
f"Initialized GroupChat '{self.name}' with {len(self.agents)} agents. Max loops: {self.max_loops}",
|
||||
title="Groupchat Swarm",
|
||||
)
|
||||
|
||||
async def _agent_conversation(
|
||||
self, agent: Agent, input_message: str
|
||||
) -> AgentOutput:
|
||||
"""
|
||||
Facilitate a single agent's response to the chat.
|
||||
|
||||
Args:
|
||||
agent (Agent): The agent responding.
|
||||
input_message (str): The message triggering the response.
|
||||
|
||||
Returns:
|
||||
AgentOutput: The agent's response captured in a structured format.
|
||||
"""
|
||||
formatter.print_panel(
|
||||
f"Agent '{agent.agent_name}' is responding to the message: {input_message}",
|
||||
title="Groupchat Swarm",
|
||||
)
|
||||
response = await asyncio.to_thread(agent.run, input_message)
|
||||
|
||||
output = AgentOutput(
|
||||
agent_name=agent.agent_name,
|
||||
message=response,
|
||||
metadata={"context_length": agent.context_length},
|
||||
)
|
||||
# logger.debug(f"Agent '{agent.agent_name}' response: {response}")
|
||||
return output
|
||||
|
||||
async def _run(self, initial_message: str) -> List[AgentOutput]:
|
||||
"""
|
||||
Execute the group chat asynchronously, looping through all agents up to max_loops.
|
||||
|
||||
Args:
|
||||
initial_message (str): The initial message to start the chat.
|
||||
|
||||
Returns:
|
||||
List[AgentOutput]: The responses of all agents across all loops.
|
||||
"""
|
||||
formatter.print_panel(
|
||||
f"Starting group chat '{self.name}' with initial message: {initial_message}",
|
||||
title="Groupchat Swarm",
|
||||
)
|
||||
self.chat_history.append(
|
||||
{"sender": "System", "message": initial_message}
|
||||
)
|
||||
|
||||
outputs = []
|
||||
for loop in range(self.max_loops):
|
||||
formatter.print_panel(
|
||||
f"Group chat loop {loop + 1}/{self.max_loops}",
|
||||
title="Groupchat Swarm",
|
||||
)
|
||||
|
||||
for agent in self.agents:
|
||||
# Create a custom input message for each agent, sharing the chat history and social context
|
||||
input_message = (
|
||||
f"Chat History:\n{self._format_chat_history()}\n\n"
|
||||
f"Participants:\n"
|
||||
+ "\n".join(
|
||||
[
|
||||
f"- {a.agent_name}: {a.system_prompt}"
|
||||
for a in self.agents
|
||||
]
|
||||
)
|
||||
+ f"\n\nNew Message: {initial_message}\n\n"
|
||||
f"You are '{agent.agent_name}'. Remember to keep track of the social context, who is speaking, "
|
||||
f"and respond accordingly based on your role: {agent.system_prompt}."
|
||||
)
|
||||
|
||||
# Collect agent's response
|
||||
output = await self._agent_conversation(
|
||||
agent, input_message
|
||||
)
|
||||
outputs.append(output)
|
||||
|
||||
# Update chat history with the agent's response
|
||||
self.chat_history.append(
|
||||
{
|
||||
"sender": agent.agent_name,
|
||||
"message": output.message,
|
||||
}
|
||||
)
|
||||
|
||||
formatter.print_panel(
|
||||
"Group chat completed. All agent responses captured.",
|
||||
title="Groupchat Swarm",
|
||||
)
|
||||
return outputs
|
||||
|
||||
def run(self, task: str, *args, **kwargs):
|
||||
return asyncio.run(self.run(task, *args, **kwargs))
|
||||
|
||||
def _format_chat_history(self) -> str:
|
||||
"""
|
||||
Format the chat history for agents to understand the context.
|
||||
|
||||
Returns:
|
||||
str: The formatted chat history as a string.
|
||||
"""
|
||||
return "\n".join(
|
||||
[
|
||||
f"{entry['sender']}: {entry['message']}"
|
||||
for entry in self.chat_history
|
||||
]
|
||||
)
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""String representation of the group chat's outputs."""
|
||||
return self._format_chat_history()
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""JSON representation of the group chat's outputs."""
|
||||
return [
|
||||
{"sender": entry["sender"], "message": entry["message"]}
|
||||
for entry in self.chat_history
|
||||
]
|
||||
|
||||
|
||||
# Example Usage
|
||||
if __name__ == "__main__":
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Get the OpenAI API key from the environment variable
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
# Create an instance of the OpenAIChat class
|
||||
model = OpenAIChat(
|
||||
openai_api_key=api_key,
|
||||
model_name="gpt-4o-mini",
|
||||
temperature=0.1,
|
||||
)
|
||||
|
||||
# Example agents
|
||||
agent1 = Agent(
|
||||
agent_name="Financial-Analysis-Agent",
|
||||
system_prompt="You are a financial analyst specializing in investment strategies.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=False,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
user_name="swarms_corp",
|
||||
retry_attempts=1,
|
||||
context_length=200000,
|
||||
output_type="string",
|
||||
streaming_on=False,
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
agent_name="Tax-Adviser-Agent",
|
||||
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=False,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
user_name="swarms_corp",
|
||||
retry_attempts=1,
|
||||
context_length=200000,
|
||||
output_type="string",
|
||||
streaming_on=False,
|
||||
)
|
||||
|
||||
# Create group chat
|
||||
group_chat = GroupChat(
|
||||
name="Financial Discussion",
|
||||
description="A group chat for financial analysis and tax advice.",
|
||||
agents=[agent1, agent2],
|
||||
)
|
||||
|
||||
# Run the group chat
|
||||
asyncio.run(
|
||||
group_chat.run(
|
||||
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria? What do you guys think?"
|
||||
)
|
||||
)
|
@ -0,0 +1,203 @@
|
||||
from typing import Any
|
||||
import inspect
|
||||
from functools import partial
|
||||
import logging
|
||||
|
||||
|
||||
class NameResolver:
|
||||
"""Utility class for resolving names of various objects"""
|
||||
|
||||
@staticmethod
|
||||
def get_name(obj: Any, default: str = "unnamed_callable") -> str:
|
||||
"""
|
||||
Get the name of any object with multiple fallback strategies.
|
||||
|
||||
Args:
|
||||
obj: The object to get the name from
|
||||
default: Default name if all strategies fail
|
||||
|
||||
Returns:
|
||||
str: The resolved name
|
||||
"""
|
||||
strategies = [
|
||||
# Try getting __name__ attribute
|
||||
lambda x: getattr(x, "__name__", None),
|
||||
# Try getting class name
|
||||
lambda x: (
|
||||
x.__class__.__name__
|
||||
if hasattr(x, "__class__")
|
||||
else None
|
||||
),
|
||||
# Try getting function name if it's a partial
|
||||
lambda x: (
|
||||
x.func.__name__ if isinstance(x, partial) else None
|
||||
),
|
||||
# Try getting the name from the class's type
|
||||
lambda x: type(x).__name__,
|
||||
# Try getting qualname
|
||||
lambda x: getattr(x, "__qualname__", None),
|
||||
# Try getting the module and class name
|
||||
lambda x: (
|
||||
f"{x.__module__}.{x.__class__.__name__}"
|
||||
if hasattr(x, "__module__")
|
||||
else None
|
||||
),
|
||||
# For async functions
|
||||
lambda x: (
|
||||
x.__name__ if inspect.iscoroutinefunction(x) else None
|
||||
),
|
||||
# For classes with custom __str__
|
||||
lambda x: (
|
||||
str(x)
|
||||
if hasattr(x, "__str__")
|
||||
and x.__str__ != object.__str__
|
||||
else None
|
||||
),
|
||||
# For wrapped functions
|
||||
lambda x: (
|
||||
getattr(x, "__wrapped__", None).__name__
|
||||
if hasattr(x, "__wrapped__")
|
||||
else None
|
||||
),
|
||||
]
|
||||
|
||||
# Try each strategy
|
||||
for strategy in strategies:
|
||||
try:
|
||||
name = strategy(obj)
|
||||
if name and isinstance(name, str):
|
||||
return name.replace(" ", "_").replace("-", "_")
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
# Return default if all strategies fail
|
||||
return default
|
||||
|
||||
@staticmethod
|
||||
def get_callable_details(obj: Any) -> dict:
|
||||
"""
|
||||
Get detailed information about a callable object.
|
||||
|
||||
Returns:
|
||||
dict: Dictionary containing:
|
||||
- name: The resolved name
|
||||
- type: The type of callable
|
||||
- signature: The signature if available
|
||||
- module: The module name if available
|
||||
- doc: The docstring if available
|
||||
"""
|
||||
details = {
|
||||
"name": NameResolver.get_name(obj),
|
||||
"type": "unknown",
|
||||
"signature": None,
|
||||
"module": getattr(obj, "__module__", "unknown"),
|
||||
"doc": inspect.getdoc(obj)
|
||||
or "No documentation available",
|
||||
}
|
||||
|
||||
# Determine the type
|
||||
if inspect.isclass(obj):
|
||||
details["type"] = "class"
|
||||
elif inspect.iscoroutinefunction(obj):
|
||||
details["type"] = "async_function"
|
||||
elif inspect.isfunction(obj):
|
||||
details["type"] = "function"
|
||||
elif isinstance(obj, partial):
|
||||
details["type"] = "partial"
|
||||
elif callable(obj):
|
||||
details["type"] = "callable"
|
||||
|
||||
# Try to get signature
|
||||
try:
|
||||
details["signature"] = str(inspect.signature(obj))
|
||||
except (ValueError, TypeError):
|
||||
details["signature"] = "Unknown signature"
|
||||
|
||||
return details
|
||||
|
||||
@classmethod
|
||||
def get_safe_name(cls, obj: Any, max_retries: int = 3) -> str:
|
||||
"""
|
||||
Safely get a name with retries and validation.
|
||||
|
||||
Args:
|
||||
obj: Object to get name from
|
||||
max_retries: Maximum number of retry attempts
|
||||
|
||||
Returns:
|
||||
str: A valid name string
|
||||
"""
|
||||
retries = 0
|
||||
last_error = None
|
||||
|
||||
while retries < max_retries:
|
||||
try:
|
||||
name = cls.get_name(obj)
|
||||
|
||||
# Validate and clean the name
|
||||
if name:
|
||||
# Remove invalid characters
|
||||
clean_name = "".join(
|
||||
c
|
||||
for c in name
|
||||
if c.isalnum() or c in ["_", "."]
|
||||
)
|
||||
|
||||
# Ensure it starts with a letter or underscore
|
||||
if (
|
||||
not clean_name[0].isalpha()
|
||||
and clean_name[0] != "_"
|
||||
):
|
||||
clean_name = f"_{clean_name}"
|
||||
|
||||
return clean_name
|
||||
|
||||
except Exception as e:
|
||||
last_error = e
|
||||
retries += 1
|
||||
|
||||
# If all retries failed, generate a unique fallback name
|
||||
import uuid
|
||||
|
||||
fallback = f"callable_{uuid.uuid4().hex[:8]}"
|
||||
logging.warning(
|
||||
f"Failed to get name after {max_retries} retries. Using fallback: {fallback}. "
|
||||
f"Last error: {str(last_error)}"
|
||||
)
|
||||
return fallback
|
||||
|
||||
|
||||
# # Example usage
|
||||
# if __name__ == "__main__":
|
||||
# def test_resolver():
|
||||
# # Test cases
|
||||
# class TestClass:
|
||||
# def method(self):
|
||||
# pass
|
||||
|
||||
# async def async_func():
|
||||
# pass
|
||||
|
||||
# test_cases = [
|
||||
# TestClass, # Class
|
||||
# TestClass(), # Instance
|
||||
# async_func, # Async function
|
||||
# lambda x: x, # Lambda
|
||||
# partial(print, end=""), # Partial
|
||||
# TestClass.method, # Method
|
||||
# print, # Built-in function
|
||||
# str, # Built-in class
|
||||
# ]
|
||||
|
||||
# resolver = NameResolver()
|
||||
|
||||
# print("\nName Resolution Results:")
|
||||
# print("-" * 50)
|
||||
# for obj in test_cases:
|
||||
# details = resolver.get_callable_details(obj)
|
||||
# safe_name = resolver.get_safe_name(obj)
|
||||
# print(f"\nObject: {obj}")
|
||||
# print(f"Safe Name: {safe_name}")
|
||||
# print(f"Details: {details}")
|
||||
|
||||
# test_resolver()
|
Loading…
Reference in new issue