[DELETE OLD PACKAGES]

pull/642/head
Your Name 1 month ago
parent b6ca99b513
commit 73d23f1995

@ -0,0 +1,56 @@
import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
from async_executor import HighSpeedExecutor
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
# autosave=True,
# dashboard=False,
# verbose=True,
# dynamic_temperature_enabled=True,
# saved_state_path="finance_agent.json",
# user_name="swarms_corp",
# retry_attempts=1,
# context_length=200000,
# return_step_meta=True,
# output_type="json", # "json", "dict", "csv" OR "string" soon "yaml" and
# auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task
# # artifacts_on=True,
# artifacts_output_path="roth_ira_report",
# artifacts_file_extension=".txt",
# max_tokens=8000,
# return_history=True,
)
def execute_agent(
task: str = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria. Create a report on this question.",
):
return agent.run(task)
executor = HighSpeedExecutor()
results = executor.run(execute_agent, 2)
print(results)

@ -0,0 +1,131 @@
import asyncio
import multiprocessing as mp
import time
from functools import partial
from typing import Any, Dict, Union
class HighSpeedExecutor:
def __init__(self, num_processes: int = None):
"""
Initialize the executor with configurable number of processes.
If num_processes is None, it uses CPU count.
"""
self.num_processes = num_processes or mp.cpu_count()
async def _worker(
self,
queue: asyncio.Queue,
func: Any,
*args: Any,
**kwargs: Any,
):
"""Async worker that processes tasks from the queue"""
while True:
try:
# Non-blocking get from queue
await queue.get()
await asyncio.get_event_loop().run_in_executor(
None, partial(func, *args, **kwargs)
)
queue.task_done()
except asyncio.CancelledError:
break
async def _distribute_tasks(
self, num_tasks: int, queue: asyncio.Queue
):
"""Distribute tasks across the queue"""
for i in range(num_tasks):
await queue.put(i)
async def execute_batch(
self,
func: Any,
num_executions: int,
*args: Any,
**kwargs: Any,
) -> Dict[str, Union[int, float]]:
"""
Execute the given function multiple times concurrently.
Args:
func: The function to execute
num_executions: Number of times to execute the function
*args, **kwargs: Arguments to pass to the function
Returns:
A dictionary containing the number of executions, duration, and executions per second.
"""
queue = asyncio.Queue()
# Create worker tasks
workers = [
asyncio.create_task(
self._worker(queue, func, *args, **kwargs)
)
for _ in range(self.num_processes)
]
# Start timing
start_time = time.perf_counter()
# Distribute tasks
await self._distribute_tasks(num_executions, queue)
# Wait for all tasks to complete
await queue.join()
# Cancel workers
for worker in workers:
worker.cancel()
# Wait for all workers to finish
await asyncio.gather(*workers, return_exceptions=True)
end_time = time.perf_counter()
duration = end_time - start_time
return {
"executions": num_executions,
"duration": duration,
"executions_per_second": num_executions / duration,
}
def run(
self,
func: Any,
num_executions: int,
*args: Any,
**kwargs: Any,
):
return asyncio.run(
self.execute_batch(func, num_executions, *args, **kwargs)
)
# def example_function(x: int = 0) -> int:
# """Example function to execute"""
# return x * x
# async def main():
# # Create executor with number of CPU cores
# executor = HighSpeedExecutor()
# # Execute the function 1000 times
# result = await executor.execute_batch(
# example_function, num_executions=1000, x=42
# )
# print(
# f"Completed {result['executions']} executions in {result['duration']:.2f} seconds"
# )
# print(
# f"Rate: {result['executions_per_second']:.2f} executions/second"
# )
# if __name__ == "__main__":
# # Run the async main function
# asyncio.run(main())

@ -0,0 +1,244 @@
import os
import asyncio
from pydantic import BaseModel, Field
from typing import List, Dict, Any
from swarms import Agent
from swarm_models import OpenAIChat
from dotenv import load_dotenv
from swarms.utils.formatter import formatter
# Load environment variables
load_dotenv()
# Get OpenAI API key
api_key = os.getenv("OPENAI_API_KEY")
# Define Pydantic schema for agent outputs
class AgentOutput(BaseModel):
"""Schema for capturing the output of each agent."""
agent_name: str = Field(..., description="The name of the agent")
message: str = Field(
...,
description="The agent's response or contribution to the group chat",
)
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Additional metadata about the agent's response",
)
class GroupChat:
"""
GroupChat class to enable multiple agents to communicate in an asynchronous group chat.
Each agent is aware of all other agents, every message exchanged, and the social context.
"""
def __init__(
self,
name: str,
description: str,
agents: List[Agent],
max_loops: int = 1,
):
"""
Initialize the GroupChat.
Args:
name (str): Name of the group chat.
description (str): Description of the purpose of the group chat.
agents (List[Agent]): A list of agents participating in the chat.
max_loops (int): Maximum number of loops to run through all agents.
"""
self.name = name
self.description = description
self.agents = agents
self.max_loops = max_loops
self.chat_history = (
[]
) # Stores all messages exchanged in the chat
formatter.print_panel(
f"Initialized GroupChat '{self.name}' with {len(self.agents)} agents. Max loops: {self.max_loops}",
title="Groupchat Swarm",
)
async def _agent_conversation(
self, agent: Agent, input_message: str
) -> AgentOutput:
"""
Facilitate a single agent's response to the chat.
Args:
agent (Agent): The agent responding.
input_message (str): The message triggering the response.
Returns:
AgentOutput: The agent's response captured in a structured format.
"""
formatter.print_panel(
f"Agent '{agent.agent_name}' is responding to the message: {input_message}",
title="Groupchat Swarm",
)
response = await asyncio.to_thread(agent.run, input_message)
output = AgentOutput(
agent_name=agent.agent_name,
message=response,
metadata={"context_length": agent.context_length},
)
# logger.debug(f"Agent '{agent.agent_name}' response: {response}")
return output
async def _run(self, initial_message: str) -> List[AgentOutput]:
"""
Execute the group chat asynchronously, looping through all agents up to max_loops.
Args:
initial_message (str): The initial message to start the chat.
Returns:
List[AgentOutput]: The responses of all agents across all loops.
"""
formatter.print_panel(
f"Starting group chat '{self.name}' with initial message: {initial_message}",
title="Groupchat Swarm",
)
self.chat_history.append(
{"sender": "System", "message": initial_message}
)
outputs = []
for loop in range(self.max_loops):
formatter.print_panel(
f"Group chat loop {loop + 1}/{self.max_loops}",
title="Groupchat Swarm",
)
for agent in self.agents:
# Create a custom input message for each agent, sharing the chat history and social context
input_message = (
f"Chat History:\n{self._format_chat_history()}\n\n"
f"Participants:\n"
+ "\n".join(
[
f"- {a.agent_name}: {a.system_prompt}"
for a in self.agents
]
)
+ f"\n\nNew Message: {initial_message}\n\n"
f"You are '{agent.agent_name}'. Remember to keep track of the social context, who is speaking, "
f"and respond accordingly based on your role: {agent.system_prompt}."
)
# Collect agent's response
output = await self._agent_conversation(
agent, input_message
)
outputs.append(output)
# Update chat history with the agent's response
self.chat_history.append(
{
"sender": agent.agent_name,
"message": output.message,
}
)
formatter.print_panel(
"Group chat completed. All agent responses captured.",
title="Groupchat Swarm",
)
return outputs
def run(self, task: str, *args, **kwargs):
return asyncio.run(self.run(task, *args, **kwargs))
def _format_chat_history(self) -> str:
"""
Format the chat history for agents to understand the context.
Returns:
str: The formatted chat history as a string.
"""
return "\n".join(
[
f"{entry['sender']}: {entry['message']}"
for entry in self.chat_history
]
)
def __str__(self) -> str:
"""String representation of the group chat's outputs."""
return self._format_chat_history()
def to_json(self) -> str:
"""JSON representation of the group chat's outputs."""
return [
{"sender": entry["sender"], "message": entry["message"]}
for entry in self.chat_history
]
# Example Usage
if __name__ == "__main__":
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.1,
)
# Example agents
agent1 = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt="You are a financial analyst specializing in investment strategies.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string",
streaming_on=False,
)
agent2 = Agent(
agent_name="Tax-Adviser-Agent",
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string",
streaming_on=False,
)
# Create group chat
group_chat = GroupChat(
name="Financial Discussion",
description="A group chat for financial analysis and tax advice.",
agents=[agent1, agent2],
)
# Run the group chat
asyncio.run(
group_chat.run(
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria? What do you guys think?"
)
)

@ -1,6 +1,5 @@
import os import os
import asyncio import asyncio
import threading
from swarms import Agent from swarms import Agent
from swarm_models import OpenAIChat from swarm_models import OpenAIChat
import time import time
@ -40,18 +39,21 @@ agent = Agent(
streaming_on=False, streaming_on=False,
) )
# Function to measure time and memory usage # Function to measure time and memory usage
def measure_time_and_memory(func): def measure_time_and_memory(func):
def wrapper(*args, **kwargs): def wrapper(*args, **kwargs):
start_time = time.time() start_time = time.time()
result = func(*args, **kwargs) result = func(*args, **kwargs)
end_time = time.time() end_time = time.time()
memory_usage = psutil.Process().memory_info().rss / 1024 ** 2 memory_usage = psutil.Process().memory_info().rss / 1024**2
print(f"Time taken: {end_time - start_time} seconds") print(f"Time taken: {end_time - start_time} seconds")
print(f"Memory used: {memory_usage} MB") print(f"Memory used: {memory_usage} MB")
return result return result
return wrapper return wrapper
# Function to run the agent asynchronously # Function to run the agent asynchronously
@measure_time_and_memory @measure_time_and_memory
async def run_agent_async(): async def run_agent_async():
@ -61,11 +63,13 @@ async def run_agent_async():
) )
) )
# Function to run the agent on another thread # Function to run the agent on another thread
@measure_time_and_memory @measure_time_and_memory
def run_agent_thread(): def run_agent_thread():
asyncio.run(run_agent_async()) asyncio.run(run_agent_async())
# Run the agent asynchronously and on another thread to test the speed # Run the agent asynchronously and on another thread to test the speed
asyncio.run(run_agent_async()) asyncio.run(run_agent_async())
run_agent_thread() run_agent_thread()

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "6.2.9" version = "6.3.6"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]
@ -37,6 +37,14 @@ keywords = [
"Generative AI", "Generative AI",
"Agent Marketplace", "Agent Marketplace",
"Agent Store", "Agent Store",
"quant",
"finance",
"algorithmic trading",
"portfolio optimization",
"risk management",
"financial modeling",
"machine learning for finance",
"natural language processing for finance",
] ]
classifiers = [ classifiers = [
"Development Status :: 4 - Beta", "Development Status :: 4 - Beta",
@ -52,27 +60,18 @@ python = ">=3.10,<4.0"
torch = ">=2.1.1,<3.0" torch = ">=2.1.1,<3.0"
transformers = ">= 4.39.0, <5.0.0" transformers = ">= 4.39.0, <5.0.0"
asyncio = ">=3.4.3,<4.0" asyncio = ">=3.4.3,<4.0"
langchain-community = "0.0.29"
langchain-experimental = "0.0.55"
backoff = "2.2.1"
toml = "*" toml = "*"
pypdf = "4.3.1" pypdf = "4.3.1"
loguru = "0.7.2" loguru = "*"
pydantic = "2.8.2" pydantic = "2.8.2"
tenacity = "8.5.0" tenacity = "*"
Pillow = "10.4.0"
psutil = "*" psutil = "*"
sentry-sdk = {version = "*", extras = ["http"]} # Updated here sentry-sdk = {version = "*", extras = ["http"]} # Updated here
python-dotenv = "*" python-dotenv = "*"
PyYAML = "*" PyYAML = "*"
docstring_parser = "0.16" docstring_parser = "0.16"
fastapi = "*"
openai = ">=1.30.1,<2.0"
termcolor = "*"
tiktoken = "*" tiktoken = "*"
networkx = "*" networkx = "*"
swarms-memory = "*"
black = "*"
aiofiles = "*" aiofiles = "*"
swarm-models = "*" swarm-models = "*"
clusterops = "*" clusterops = "*"
@ -96,9 +95,7 @@ mypy-protobuf = "^3.0.0"
[tool.poetry.group.test.dependencies] [tool.poetry.group.test.dependencies]
pytest = "^8.1.1" pytest = "^8.1.1"
termcolor = "^2.4.0"
pandas = "^2.2.2" pandas = "^2.2.2"
fastapi = ">=0.110.1,<0.116.0"
[tool.ruff] [tool.ruff]
line-length = 70 line-length = 70

@ -2,21 +2,16 @@
torch>=2.1.1,<3.0 torch>=2.1.1,<3.0
transformers>=4.39.0,<5.0.0 transformers>=4.39.0,<5.0.0
asyncio>=3.4.3,<4.0 asyncio>=3.4.3,<4.0
langchain-community==0.0.28
langchain-experimental==0.0.55
backoff==2.2.1
toml toml
pypdf==4.3.1 pypdf==4.3.1
ratelimit==2.2.1 ratelimit==2.2.1
loguru==0.7.2 loguru==0.7.2
pydantic==2.8.2 pydantic==2.8.2
tenacity==8.5.0 tenacity
Pillow==10.4.0
rich rich
psutil psutil
sentry-sdk sentry-sdk
python-dotenv python-dotenv
opencv-python-headless
PyYAML PyYAML
docstring_parser==0.16 docstring_parser==0.16
black>=23.1,<25.0 black>=23.1,<25.0
@ -26,12 +21,8 @@ types-pytz>=2023.3,<2025.0
types-chardet>=5.0.4.6 types-chardet>=5.0.4.6
mypy-protobuf>=3.0.0 mypy-protobuf>=3.0.0
pytest>=8.1.1 pytest>=8.1.1
termcolor>=2.4.0
pandas>=2.2.2 pandas>=2.2.2
fastapi>=0.110.1
networkx networkx
swarms-memory
pre-commit
aiofiles aiofiles
swarm-models swarm-models
clusterops clusterops

@ -24,8 +24,6 @@ import toml
import yaml import yaml
from pydantic import BaseModel from pydantic import BaseModel
from swarm_models.tiktoken_wrapper import TikTokenizer from swarm_models.tiktoken_wrapper import TikTokenizer
from termcolor import colored
from swarms.agents.ape_agent import auto_generate_prompt from swarms.agents.ape_agent import auto_generate_prompt
from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3 from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3
from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
@ -671,11 +669,8 @@ class Agent:
return self.stopping_condition(response) return self.stopping_condition(response)
return False return False
except Exception as error: except Exception as error:
print( logger.error(
colored( f"Error checking stopping condition: {error}"
f"Error checking stopping condition: {error}",
"red",
)
) )
def dynamic_temperature(self): def dynamic_temperature(self):
@ -688,21 +683,20 @@ class Agent:
try: try:
if hasattr(self.llm, "temperature"): if hasattr(self.llm, "temperature"):
# Randomly change the temperature attribute of self.llm object # Randomly change the temperature attribute of self.llm object
logger.info("Enabling Random Dyamic Temperature")
self.llm.temperature = random.uniform(0.0, 1.0) self.llm.temperature = random.uniform(0.0, 1.0)
else: else:
# Use a default temperature # Use a default temperature
self.llm.temperature = 0.5 self.llm.temperature = 0.5
except Exception as error: except Exception as error:
print( logger.error(
colored( f"Error dynamically changing temperature: {error}"
f"Error dynamically changing temperature: {error}"
)
) )
def print_dashboard(self): def print_dashboard(self):
"""Print dashboard""" """Print dashboard"""
print(colored("Initializing Agent Dashboard...", "yellow")) formatter.print_panel(
f"Initializing Agent: {self.agent_name}"
)
data = self.to_dict() data = self.to_dict()
@ -710,22 +704,19 @@ class Agent:
# data = json.dumps(data, indent=4) # data = json.dumps(data, indent=4)
# json_data = json.dumps(data, indent=4) # json_data = json.dumps(data, indent=4)
print( formatter.print_panel(
colored( f"""
f""" Agent Dashboard
Agent Dashboard --------------------------------------------
--------------------------------------------
Agent {self.agent_name} is initializing for {self.max_loops} with the following configuration: Agent {self.agent_name} is initializing for {self.max_loops} with the following configuration:
---------------------------------------- ----------------------------------------
Agent Configuration: Agent Configuration:
Configuration: {data} Configuration: {data}
---------------------------------------- ----------------------------------------
""", """,
"green",
)
) )
def loop_count_print( def loop_count_print(
@ -737,7 +728,7 @@ class Agent:
loop_count (_type_): _description_ loop_count (_type_): _description_
max_loops (_type_): _description_ max_loops (_type_): _description_
""" """
print(colored(f"\nLoop {loop_count} of {max_loops}", "cyan")) logger.info(f"\nLoop {loop_count} of {max_loops}")
print("\n") print("\n")
# Check parameters # Check parameters
@ -761,8 +752,8 @@ class Agent:
self, self,
task: Optional[str] = None, task: Optional[str] = None,
img: Optional[str] = None, img: Optional[str] = None,
is_last: bool = False, is_last: Optional[bool] = False,
print_task: bool = False, print_task: Optional[bool] = False,
*args, *args,
**kwargs, **kwargs,
) -> Any: ) -> Any:
@ -960,7 +951,7 @@ class Agent:
if self.interactive: if self.interactive:
logger.info("Interactive mode enabled.") logger.info("Interactive mode enabled.")
user_input = colored(input("You: "), "red") user_input = formatter.print_panel(input("You: "))
# User-defined exit command # User-defined exit command
if ( if (
@ -1060,7 +1051,7 @@ class Agent:
except Exception as error: except Exception as error:
logger.info( logger.info(
f"Error running agent: {error} optimize your input parameters" f"Error running agent: {error} optimize your input parameter"
) )
raise error raise error
@ -1261,7 +1252,7 @@ class Agent:
logger.info(f"Running bulk tasks: {inputs}") logger.info(f"Running bulk tasks: {inputs}")
return [self.run(**input_data) for input_data in inputs] return [self.run(**input_data) for input_data in inputs]
except Exception as error: except Exception as error:
print(colored(f"Error running bulk run: {error}", "red")) logger.info(f"Error running bulk run: {error}", "red")
def save(self) -> None: def save(self) -> None:
"""Save the agent history to a file. """Save the agent history to a file.
@ -1438,9 +1429,7 @@ class Agent:
with open(file_path, "w") as f: with open(file_path, "w") as f:
yaml.dump(self.to_dict(), f) yaml.dump(self.to_dict(), f)
except Exception as error: except Exception as error:
logger.error( logger.error(f"Error saving agent to YAML: {error}")
colored(f"Error saving agent to YAML: {error}", "red")
)
raise error raise error
def get_llm_parameters(self): def get_llm_parameters(self):
@ -1505,7 +1494,7 @@ class Agent:
role=self.user_name, content=data role=self.user_name, content=data
) )
except Exception as error: except Exception as error:
print(colored(f"Error ingesting docs: {error}", "red")) logger.info(f"Error ingesting docs: {error}", "red")
def ingest_pdf(self, pdf: str): def ingest_pdf(self, pdf: str):
"""Ingest the pdf into the memory """Ingest the pdf into the memory
@ -1520,7 +1509,7 @@ class Agent:
role=self.user_name, content=text role=self.user_name, content=text
) )
except Exception as error: except Exception as error:
print(colored(f"Error ingesting pdf: {error}", "red")) logger.info(f"Error ingesting pdf: {error}", "red")
def receieve_message(self, name: str, message: str): def receieve_message(self, name: str, message: str):
"""Receieve a message""" """Receieve a message"""
@ -1604,12 +1593,10 @@ class Agent:
role=self.user_name, content=text role=self.user_name, content=text
) )
except Exception as error: except Exception as error:
print( logger.error(
colored( f"Error getting docs from doc folders: {error}"
f"Error getting docs from doc folders: {error}",
"red",
)
) )
raise error
def check_end_session_agentops(self): def check_end_session_agentops(self):
if self.agent_ops_on is True: if self.agent_ops_on is True:
@ -1629,7 +1616,8 @@ class Agent:
try: try:
# Query the long term memory # Query the long term memory
if self.long_term_memory is not None: if self.long_term_memory is not None:
logger.info(f"Querying long term memory for: {task}") formatter.print_panel(f"Querying RAG for: {task}")
memory_retrieval = self.long_term_memory.query( memory_retrieval = self.long_term_memory.query(
task, *args, **kwargs task, *args, **kwargs
) )
@ -1638,15 +1626,15 @@ class Agent:
f"Documents Available: {str(memory_retrieval)}" f"Documents Available: {str(memory_retrieval)}"
) )
# Count the tokens # # Count the tokens
memory_token_count = self.tokenizer.count_tokens( # memory_token_count = self.tokenizer.count_tokens(
memory_retrieval # memory_retrieval
) # )
if memory_token_count > self.memory_chunk_size: # if memory_token_count > self.memory_chunk_size:
# Truncate the memory by the memory chunk size # # Truncate the memory by the memory chunk size
memory_retrieval = self.truncate_string_by_tokens( # memory_retrieval = self.truncate_string_by_tokens(
memory_retrieval, self.memory_chunk_size # memory_retrieval, self.memory_chunk_size
) # )
self.short_memory.add( self.short_memory.add(
role="Database", role="Database",

@ -1,8 +1,7 @@
import json import json
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from termcolor import colored from swarms.utils.formatter import formatter
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.base_structure import BaseStructure from swarms.structs.base_structure import BaseStructure
from swarms.structs.task import Task from swarms.structs.task import Task
@ -132,9 +131,10 @@ class BaseWorkflow(BaseStructure):
for task in self.tasks: for task in self.tasks:
task.result = None task.result = None
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored(f"Error resetting workflow: {error}", "red"), f"Error resetting workflow: {error}"
) )
raise error
def get_task_results(self) -> Dict[str, Any]: def get_task_results(self) -> Dict[str, Any]:
""" """
@ -148,10 +148,8 @@ class BaseWorkflow(BaseStructure):
task.description: task.result for task in self.tasks task.description: task.result for task in self.tasks
} }
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error getting task results: {error}"
f"Error getting task results: {error}", "red"
),
) )
def remove_task(self, task: str) -> None: def remove_task(self, task: str) -> None:
@ -163,12 +161,10 @@ class BaseWorkflow(BaseStructure):
if task.description != task if task.description != task
] ]
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error removing task from workflow: {error}",
f"Error removing task from workflow: {error}",
"red",
),
) )
raise error
def update_task(self, task: str, **updates) -> None: def update_task(self, task: str, **updates) -> None:
""" """
@ -203,11 +199,9 @@ class BaseWorkflow(BaseStructure):
f"Task {task} not found in workflow." f"Task {task} not found in workflow."
) )
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error updating task in workflow: {error}"
f"Error updating task in workflow: {error}", "red" ),
),
)
def delete_task(self, task: str) -> None: def delete_task(self, task: str) -> None:
""" """
@ -240,12 +234,10 @@ class BaseWorkflow(BaseStructure):
f"Task {task} not found in workflow." f"Task {task} not found in workflow."
) )
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error deleting task from workflow: {error}",
f"Error deleting task from workflow: {error}",
"red",
),
) )
raise error
def save_workflow_state( def save_workflow_state(
self, self,
@ -287,23 +279,18 @@ class BaseWorkflow(BaseStructure):
} }
json.dump(state, f, indent=4) json.dump(state, f, indent=4)
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error saving workflow state: {error}",
f"Error saving workflow state: {error}",
"red",
)
) )
raise error
def add_objective_to_workflow(self, task: str, **kwargs) -> None: def add_objective_to_workflow(self, task: str, **kwargs) -> None:
"""Adds an objective to the workflow.""" """Adds an objective to the workflow."""
try: try:
print( formatter.print_panel(
colored( """
""" Adding Objective to Workflow...""",
Adding Objective to Workflow...""", "green",
"green",
attrs=["bold", "underline"],
)
) )
task = Task( task = Task(
@ -314,12 +301,10 @@ class BaseWorkflow(BaseStructure):
) )
self.tasks.append(task) self.tasks.append(task)
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error adding objective to workflow: {error}",
f"Error adding objective to workflow: {error}",
"red",
)
) )
raise error
def load_workflow_state( def load_workflow_state(
self, filepath: str = None, **kwargs self, filepath: str = None, **kwargs
@ -359,11 +344,8 @@ class BaseWorkflow(BaseStructure):
) )
self.tasks.append(task) self.tasks.append(task)
except Exception as error: except Exception as error:
print( formatter.print_panel(
colored( f"Error loading workflow state: {error}",
f"Error loading workflow state: {error}",
"red",
)
) )
def workflow_dashboard(self, **kwargs) -> None: def workflow_dashboard(self, **kwargs) -> None:
@ -383,25 +365,21 @@ class BaseWorkflow(BaseStructure):
>>> workflow.workflow_dashboard() >>> workflow.workflow_dashboard()
""" """
print( formatter.print_panel(
colored( f"""
f""" Sequential Workflow Dashboard
Sequential Workflow Dashboard --------------------------------
-------------------------------- Name: {self.name}
Name: {self.name} Description: {self.description}
Description: {self.description} task_pool: {len(self.task_pool)}
task_pool: {len(self.task_pool)} Max Loops: {self.max_loops}
Max Loops: {self.max_loops} Autosave: {self.autosave}
Autosave: {self.autosave} Autosave Filepath: {self.saved_state_filepath}
Autosave Filepath: {self.saved_state_filepath} Restore Filepath: {self.restore_state_filepath}
Restore Filepath: {self.restore_state_filepath} --------------------------------
-------------------------------- Metadata:
Metadata: kwargs: {kwargs}
kwargs: {kwargs} """
""",
"cyan",
attrs=["bold", "underline"],
)
) )
def workflow_bootup(self, **kwargs) -> None: def workflow_bootup(self, **kwargs) -> None:
@ -409,11 +387,6 @@ class BaseWorkflow(BaseStructure):
Workflow bootup. Workflow bootup.
""" """
print( formatter.print_panel(
colored( """Sequential Workflow Initializing...""",
"""
Sequential Workflow Initializing...""",
"green",
attrs=["bold", "underline"],
)
) )

@ -3,10 +3,9 @@ import json
from typing import Any, Optional from typing import Any, Optional
import yaml import yaml
from termcolor import colored
from swarms.structs.base_structure import BaseStructure from swarms.structs.base_structure import BaseStructure
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from swarms.utils.formatter import formatter
if TYPE_CHECKING: if TYPE_CHECKING:
from swarms.structs.agent import ( from swarms.structs.agent import (
@ -191,18 +190,9 @@ class Conversation(BaseStructure):
Args: Args:
detailed (bool, optional): detailed. Defaults to False. detailed (bool, optional): detailed. Defaults to False.
""" """
role_to_color = {
"system": "red",
"user": "green",
"assistant": "blue",
"function": "magenta",
}
for message in self.conversation_history: for message in self.conversation_history:
print( formatter.print_panel(
colored( f"{message['role']}: {message['content']}\n\n"
f"{message['role']}: {message['content']}\n\n",
role_to_color[message["role"]],
)
) )
def export_conversation(self, filename: str, *args, **kwargs): def export_conversation(self, filename: str, *args, **kwargs):
@ -307,46 +297,36 @@ class Conversation(BaseStructure):
for message in messages: for message in messages:
if message["role"] == "system": if message["role"] == "system":
print( formatter.print_panel(
colored( f"system: {message['content']}\n",
f"system: {message['content']}\n", role_to_color[message["role"]],
role_to_color[message["role"]],
)
) )
elif message["role"] == "user": elif message["role"] == "user":
print( formatter.print_panel(
colored( f"user: {message['content']}\n",
f"user: {message['content']}\n", role_to_color[message["role"]],
role_to_color[message["role"]],
)
) )
elif message["role"] == "assistant" and message.get( elif message["role"] == "assistant" and message.get(
"function_call" "function_call"
): ):
print( formatter.print_panel(
colored( f"assistant: {message['function_call']}\n",
f"assistant: {message['function_call']}\n", role_to_color[message["role"]],
role_to_color[message["role"]],
)
) )
elif message["role"] == "assistant" and not message.get( elif message["role"] == "assistant" and not message.get(
"function_call" "function_call"
): ):
print( formatter.print_panel(
colored( f"assistant: {message['content']}\n",
f"assistant: {message['content']}\n", role_to_color[message["role"]],
role_to_color[message["role"]],
)
) )
elif message["role"] == "tool": elif message["role"] == "tool":
print( formatter.print_panel(
colored( (
( f"function ({message['name']}):"
f"function ({message['name']}):" f" {message['content']}\n"
f" {message['content']}\n" ),
), role_to_color[message["role"]],
role_to_color[message["role"]],
)
) )
def truncate_memory_with_tokenizer(self): def truncate_memory_with_tokenizer(self):

@ -86,9 +86,7 @@ class MixtureOfAgents:
self.input_schema = MixtureOfAgentsInput( self.input_schema = MixtureOfAgentsInput(
name=name, name=name,
description=description, description=description,
agents=[ agents=[agent.to_dict() for agent in self.agents],
agent.to_dict() for agent in self.agents
],
aggregator_agent=aggregator_agent.to_dict(), aggregator_agent=aggregator_agent.to_dict(),
aggregator_system_prompt=self.aggregator_system_prompt, aggregator_system_prompt=self.aggregator_system_prompt,
layers=self.layers, layers=self.layers,

@ -414,7 +414,7 @@ def run_agents_with_tasks_concurrently(
List[Any]: A list of outputs from each agent execution. List[Any]: A list of outputs from each agent execution.
""" """
# Make the first agent not use the ifrs # Make the first agent not use the ifrs
if no_clusterops: if no_clusterops:
return _run_agents_with_tasks_concurrently( return _run_agents_with_tasks_concurrently(
agents, tasks, batch_size, max_workers agents, tasks, batch_size, max_workers

@ -121,16 +121,14 @@ class AgentRearrange(BaseSwarm):
output_type: OutputType = "final", output_type: OutputType = "final",
docs: List[str] = None, docs: List[str] = None,
doc_folder: str = None, doc_folder: str = None,
device: str = "cpu",
device_id: int = 0,
all_cores: bool = False,
all_gpus: bool = True,
no_use_clusterops: bool = True,
*args, *args,
**kwargs, **kwargs,
): ):
# reliability_check(
# agents=agents,
# name=name,
# description=description,
# flow=flow,
# max_loops=max_loops,
# )
super(AgentRearrange, self).__init__( super(AgentRearrange, self).__init__(
name=name, name=name,
description=description, description=description,
@ -150,6 +148,11 @@ class AgentRearrange(BaseSwarm):
self.output_type = output_type self.output_type = output_type
self.docs = docs self.docs = docs
self.doc_folder = doc_folder self.doc_folder = doc_folder
self.device = device
self.device_id = device_id
self.all_cores = all_cores
self.all_gpus = all_gpus
self.no_use_clusterops = no_use_clusterops
self.swarm_history = { self.swarm_history = {
agent.agent_name: [] for agent in agents agent.agent_name: [] for agent in agents
} }
@ -506,7 +509,11 @@ class AgentRearrange(BaseSwarm):
Returns: Returns:
The result from executing the task through the cluster operations wrapper. The result from executing the task through the cluster operations wrapper.
""" """
if no_use_clusterops: no_use_clusterops = (
no_use_clusterops or self.no_use_clusterops
)
if no_use_clusterops is True:
return self._run( return self._run(
task=task, task=task,
img=img, img=img,

@ -107,7 +107,7 @@ class SequentialWorkflow:
all_cores: bool = False, all_cores: bool = False,
all_gpus: bool = False, all_gpus: bool = False,
device_id: int = 0, device_id: int = 0,
no_use_clusterops: bool = False, no_use_clusterops: bool = True,
*args, *args,
**kwargs, **kwargs,
) -> str: ) -> str:

@ -1,7 +1,6 @@
import json import json
from typing import Any, Dict, List, Union from typing import Any, Dict, List, Union
from termcolor import cprint
from transformers import PreTrainedModel, PreTrainedTokenizer from transformers import PreTrainedModel, PreTrainedTokenizer
from pydantic import BaseModel from pydantic import BaseModel
from swarms.tools.logits_processor import ( from swarms.tools.logits_processor import (
@ -68,15 +67,6 @@ class Jsonformer:
self.temperature = temperature self.temperature = temperature
self.max_string_token_length = max_string_token_length self.max_string_token_length = max_string_token_length
def debug(self, caller: str, value: str, is_prompt: bool = False):
if self.debug_on:
if is_prompt:
cprint(caller, "green", end=" ")
cprint(value, "yellow")
else:
cprint(caller, "green", end=" ")
cprint(value, "blue")
def generate_number( def generate_number(
self, temperature: Union[float, None] = None, iterations=0 self, temperature: Union[float, None] = None, iterations=0
): ):

@ -3,8 +3,7 @@ from typing import Any, List
import inspect import inspect
from typing import Callable from typing import Callable
from swarms.utils.formatter import formatter
from termcolor import colored
def scrape_tool_func_docs(fn: Callable) -> str: def scrape_tool_func_docs(fn: Callable) -> str:
@ -37,17 +36,16 @@ def scrape_tool_func_docs(fn: Callable) -> str:
f" {inspect.getdoc(fn)}\nParameters:\n{parameters_str}" f" {inspect.getdoc(fn)}\nParameters:\n{parameters_str}"
) )
except Exception as error: except Exception as error:
print( error_msg = (
colored( formatter.print_panel(
( f"Error scraping tool function docs {error} try"
f"Error scraping tool function docs {error} try" " optimizing your inputs with different"
" optimizing your inputs with different" " variables and attempt once more."
" variables and attempt once more." ),
),
"red",
)
) )
raise error
def tool_find_by_name(tool_name: str, tools: List[Any]): def tool_find_by_name(tool_name: str, tools: List[Any]):
"""Find the tool by name""" """Find the tool by name"""

@ -0,0 +1,203 @@
from typing import Any
import inspect
from functools import partial
import logging
class NameResolver:
"""Utility class for resolving names of various objects"""
@staticmethod
def get_name(obj: Any, default: str = "unnamed_callable") -> str:
"""
Get the name of any object with multiple fallback strategies.
Args:
obj: The object to get the name from
default: Default name if all strategies fail
Returns:
str: The resolved name
"""
strategies = [
# Try getting __name__ attribute
lambda x: getattr(x, "__name__", None),
# Try getting class name
lambda x: (
x.__class__.__name__
if hasattr(x, "__class__")
else None
),
# Try getting function name if it's a partial
lambda x: (
x.func.__name__ if isinstance(x, partial) else None
),
# Try getting the name from the class's type
lambda x: type(x).__name__,
# Try getting qualname
lambda x: getattr(x, "__qualname__", None),
# Try getting the module and class name
lambda x: (
f"{x.__module__}.{x.__class__.__name__}"
if hasattr(x, "__module__")
else None
),
# For async functions
lambda x: (
x.__name__ if inspect.iscoroutinefunction(x) else None
),
# For classes with custom __str__
lambda x: (
str(x)
if hasattr(x, "__str__")
and x.__str__ != object.__str__
else None
),
# For wrapped functions
lambda x: (
getattr(x, "__wrapped__", None).__name__
if hasattr(x, "__wrapped__")
else None
),
]
# Try each strategy
for strategy in strategies:
try:
name = strategy(obj)
if name and isinstance(name, str):
return name.replace(" ", "_").replace("-", "_")
except Exception:
continue
# Return default if all strategies fail
return default
@staticmethod
def get_callable_details(obj: Any) -> dict:
"""
Get detailed information about a callable object.
Returns:
dict: Dictionary containing:
- name: The resolved name
- type: The type of callable
- signature: The signature if available
- module: The module name if available
- doc: The docstring if available
"""
details = {
"name": NameResolver.get_name(obj),
"type": "unknown",
"signature": None,
"module": getattr(obj, "__module__", "unknown"),
"doc": inspect.getdoc(obj)
or "No documentation available",
}
# Determine the type
if inspect.isclass(obj):
details["type"] = "class"
elif inspect.iscoroutinefunction(obj):
details["type"] = "async_function"
elif inspect.isfunction(obj):
details["type"] = "function"
elif isinstance(obj, partial):
details["type"] = "partial"
elif callable(obj):
details["type"] = "callable"
# Try to get signature
try:
details["signature"] = str(inspect.signature(obj))
except (ValueError, TypeError):
details["signature"] = "Unknown signature"
return details
@classmethod
def get_safe_name(cls, obj: Any, max_retries: int = 3) -> str:
"""
Safely get a name with retries and validation.
Args:
obj: Object to get name from
max_retries: Maximum number of retry attempts
Returns:
str: A valid name string
"""
retries = 0
last_error = None
while retries < max_retries:
try:
name = cls.get_name(obj)
# Validate and clean the name
if name:
# Remove invalid characters
clean_name = "".join(
c
for c in name
if c.isalnum() or c in ["_", "."]
)
# Ensure it starts with a letter or underscore
if (
not clean_name[0].isalpha()
and clean_name[0] != "_"
):
clean_name = f"_{clean_name}"
return clean_name
except Exception as e:
last_error = e
retries += 1
# If all retries failed, generate a unique fallback name
import uuid
fallback = f"callable_{uuid.uuid4().hex[:8]}"
logging.warning(
f"Failed to get name after {max_retries} retries. Using fallback: {fallback}. "
f"Last error: {str(last_error)}"
)
return fallback
# # Example usage
# if __name__ == "__main__":
# def test_resolver():
# # Test cases
# class TestClass:
# def method(self):
# pass
# async def async_func():
# pass
# test_cases = [
# TestClass, # Class
# TestClass(), # Instance
# async_func, # Async function
# lambda x: x, # Lambda
# partial(print, end=""), # Partial
# TestClass.method, # Method
# print, # Built-in function
# str, # Built-in class
# ]
# resolver = NameResolver()
# print("\nName Resolution Results:")
# print("-" * 50)
# for obj in test_cases:
# details = resolver.get_callable_details(obj)
# safe_name = resolver.get_safe_name(obj)
# print(f"\nObject: {obj}")
# print(f"Safe Name: {safe_name}")
# print(f"Details: {details}")
# test_resolver()

@ -1,4 +1,4 @@
from termcolor import colored from swarms.utils.formatter import formatter
def display_markdown_message(message: str, color: str = "cyan"): def display_markdown_message(message: str, color: str = "cyan"):
@ -12,13 +12,10 @@ def display_markdown_message(message: str, color: str = "cyan"):
if line == "": if line == "":
print() print()
elif line == "---": elif line == "---":
print(colored("-" * 50, color)) formatter.print_panel("-" * 50)
else: else:
print(colored(line, color)) formatter.print_panel(line)
if "\n" not in message and message.startswith(">"): if "\n" not in message and message.startswith(">"):
# Aesthetic choice. For these tags, they need a space below them # Aesthetic choice. For these tags, they need a space below them
print() print()
# display_markdown_message("I love you and you are beautiful.", "cyan")

Loading…
Cancel
Save