clean up initialize

pull/11/head
Kye 2 years ago
parent a721a3c29f
commit 7e09788660

@ -1,7 +1,8 @@
from swarms.tools.agent_tools import *
from pydantic import ValidationError from pydantic import ValidationError
import logging import logging
from swarms.tools.agent_tools import *
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# ---------- Boss Node ---------- # ---------- Boss Node ----------
@ -45,6 +46,21 @@ class BossNode:
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize vector store: {e}") logging.error(f"Failed to initialize vector store: {e}")
return None return None
def initialize_llm(self, llm_class, temperature=0.5):
"""
Init LLM
Params:
llm_class(class): The Language model class. Default is OpenAI.
temperature (float): The Temperature for the language model. Default is 0.5
"""
try:
# Initialize language model
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
def create_task(self, objective): def create_task(self, objective):
@ -71,21 +87,36 @@ class BossNode:
def boss_node(objective, api_key=None, llm=None, vectorstore=None, agent_executor=None, max_iterations=10): # from swarms import BossNode, OpenAI, LLMChain, Tool, ZeroShotAgent, AgentExecutor, PromptTemplate
#wrapper function to initialize and use Bossnode with given parameters
#api keys can be passed as an argument or set as an env def boss_node(objective, api_key=None, vectorstore=None, worker_node=None, llm_class=OpenAI, max_iterations=5, verbose=False):
api_key = api_key or os.getenv("API_KEY") """
Wrapper function to initialize and use BossNode with given parameters.
API key can be passed as argument or set as an environment variable.
"""
api_key = api_key or os.getenv('API_KEY')
if not api_key: if not api_key:
raise ValueError("API key must be providef either as argument as an env named 'api_key'") raise ValueError("API key must be provided either as argument or as an environment variable named 'API_KEY'.")
if not llm: llm = BossNode.initialize_llm(llm_class) # This function should be defined elsewhere
raise ValueError("Language model must be provided")
if not vectorstore: todo_prompt = PromptTemplate.from_template("You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating a worker to help you accomplish your task. Rate every task on the importance of it's probability to complete the main objective on a scale from 0 to 1, an integer. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn a worker agent after creating a plan and pass the objective and plan to the worker agent.")
raise ValueError("Vectorstore must be provided") todo_chain = LLMChain(llm=llm, prompt=todo_prompt)
if not agent_executor:
raise ValueError('Agent Executor must be provided') tools = [
Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for your objective. Note create a todo list then assign a ranking from 0.0 to 1.0 to each task, then sort the tasks based on the tasks most likely to achieve the objective. The Output: a todo list for that objective with rankings for each step from 0.1 Please be very clear what the objective is!"),
worker_node
]
suffix = """Question: {task}\n{agent_scratchpad}"""
prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
boss = BossNode(llm, vectorstore, agent_executor, max_iterations) boss = BossNode(llm, vectorstore, agent_executor, max_iterations)
task = boss.create_task(objective) task = boss.create_task(objective)
boss.execute_task(task) boss.execute_task(task)

Loading…
Cancel
Save