parent
89dffeb46c
commit
80467525e2
@ -1,3 +1,160 @@
|
|||||||
"""
|
import asyncio
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from functools import wraps
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
"""
|
import torch
|
||||||
|
from termcolor import colored
|
||||||
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
||||||
|
|
||||||
|
|
||||||
|
def async_retry(max_retries=3, exceptions=(Exception,), delay=1):
|
||||||
|
"""
|
||||||
|
A decorator for adding retry logic to async functions.
|
||||||
|
:param max_retries: Maximum number of retries before giving up.
|
||||||
|
:param exceptions: A tuple of exceptions to catch and retry on.
|
||||||
|
:param delay: Delay between retries.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def decorator(func):
|
||||||
|
@wraps(func)
|
||||||
|
async def wrapper(*args, **kwargs):
|
||||||
|
retries = max_retries
|
||||||
|
while retries:
|
||||||
|
try:
|
||||||
|
return await func(*args, **kwargs)
|
||||||
|
except exceptions as e:
|
||||||
|
retries -= 1
|
||||||
|
if retries <= 0:
|
||||||
|
raise
|
||||||
|
print(f"Retry after exception: {e}, Attempts remaining: {retries}")
|
||||||
|
await asyncio.sleep(delay)
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
|
||||||
|
class DistilWhisperModel:
|
||||||
|
"""
|
||||||
|
This class encapsulates the Distil-Whisper model for English speech recognition.
|
||||||
|
It allows for both synchronous and asynchronous transcription of short and long-form audio.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_id: The model ID to use. Defaults to "distil-whisper/distil-large-v2".
|
||||||
|
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
device: The device to use for inference.
|
||||||
|
torch_dtype: The torch data type to use for inference.
|
||||||
|
model_id: The model ID to use.
|
||||||
|
model: The model instance.
|
||||||
|
processor: The processor instance.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
model_wrapper = DistilWhisperModel()
|
||||||
|
transcription = model_wrapper('path/to/audio.mp3')
|
||||||
|
|
||||||
|
# For async usage
|
||||||
|
transcription = asyncio.run(model_wrapper.async_transcribe('path/to/audio.mp3'))
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model_id="distil-whisper/distil-large-v2"):
|
||||||
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
||||||
|
self.model_id = model_id
|
||||||
|
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
torch_dtype=self.torch_dtype,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
use_safetensors=True,
|
||||||
|
).to(self.device)
|
||||||
|
self.processor = AutoProcessor.from_pretrained(model_id)
|
||||||
|
|
||||||
|
def __call__(self, inputs: Union[str, dict]):
|
||||||
|
return self.transcribe(inputs)
|
||||||
|
|
||||||
|
def transcribe(self, inputs: Union[str, dict]):
|
||||||
|
"""
|
||||||
|
Synchronously transcribe the given audio input using the Distil-Whisper model.
|
||||||
|
:param inputs: A string representing the file path or a dict with audio data.
|
||||||
|
:return: The transcribed text.
|
||||||
|
"""
|
||||||
|
pipe = pipeline(
|
||||||
|
"automatic-speech-recognition",
|
||||||
|
model=self.model,
|
||||||
|
tokenizer=self.processor.tokenizer,
|
||||||
|
feature_extractor=self.processor.feature_extractor,
|
||||||
|
max_new_tokens=128,
|
||||||
|
torch_dtype=self.torch_dtype,
|
||||||
|
device=self.device,
|
||||||
|
)
|
||||||
|
|
||||||
|
return pipe(inputs)["text"]
|
||||||
|
|
||||||
|
@async_retry()
|
||||||
|
async def async_transcribe(self, inputs: Union[str, dict]):
|
||||||
|
"""
|
||||||
|
Asynchronously transcribe the given audio input using the Distil-Whisper model.
|
||||||
|
:param inputs: A string representing the file path or a dict with audio data.
|
||||||
|
:return: The transcribed text.
|
||||||
|
"""
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
return await loop.run_in_executor(None, self.transcribe, inputs)
|
||||||
|
|
||||||
|
def real_time_transcribe(self, audio_file_path, chunk_duration=5):
|
||||||
|
"""
|
||||||
|
Simulates real-time transcription of an audio file, processing and printing results
|
||||||
|
in chunks with colored output for readability.
|
||||||
|
|
||||||
|
:param audio_file_path: Path to the audio file to be transcribed.
|
||||||
|
:param chunk_duration: Duration in seconds of each audio chunk to be processed.
|
||||||
|
"""
|
||||||
|
if not os.path.isfile(audio_file_path):
|
||||||
|
print(colored("The audio file was not found.", "red"))
|
||||||
|
return
|
||||||
|
|
||||||
|
# Assuming `chunk_duration` is in seconds and `processor` can handle chunk-wise processing
|
||||||
|
try:
|
||||||
|
with torch.no_grad():
|
||||||
|
# Load the whole audio file, but process and transcribe it in chunks
|
||||||
|
audio_input = self.processor.audio_file_to_array(audio_file_path)
|
||||||
|
sample_rate = audio_input.sampling_rate
|
||||||
|
total_duration = len(audio_input.array) / sample_rate
|
||||||
|
chunks = [
|
||||||
|
audio_input.array[i : i + sample_rate * chunk_duration]
|
||||||
|
for i in range(
|
||||||
|
0, len(audio_input.array), sample_rate * chunk_duration
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
print(colored("Starting real-time transcription...", "green"))
|
||||||
|
|
||||||
|
for i, chunk in enumerate(chunks):
|
||||||
|
# Process the current chunk
|
||||||
|
processed_inputs = self.processor(
|
||||||
|
chunk,
|
||||||
|
sampling_rate=sample_rate,
|
||||||
|
return_tensors="pt",
|
||||||
|
padding=True,
|
||||||
|
)
|
||||||
|
processed_inputs = processed_inputs.input_values.to(self.device)
|
||||||
|
|
||||||
|
# Generate transcription for the chunk
|
||||||
|
logits = self.model.generate(processed_inputs)
|
||||||
|
transcription = self.processor.batch_decode(
|
||||||
|
logits, skip_special_tokens=True
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
# Print the chunk's transcription
|
||||||
|
print(
|
||||||
|
colored(f"Chunk {i+1}/{len(chunks)}: ", "yellow")
|
||||||
|
+ transcription
|
||||||
|
)
|
||||||
|
|
||||||
|
# Wait for the chunk's duration to simulate real-time processing
|
||||||
|
time.sleep(chunk_duration)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(colored(f"An error occurred during transcription: {e}", "red"))
|
||||||
|
Loading…
Reference in new issue